IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i19p14492-d1253784.html
   My bibliography  Save this article

Do Green Information and Communication Technologies (ICT) and Smart Urbanization Reduce Environmental Pollution in China?

Author

Listed:
  • Shiping Xu

    (School of Public Administration, China University of Geosciences, Wuhan 430074, China)

  • Lili Wang

    (Institute of Railway Technology, Lanzhou Jiaotong University, Lanzhou 730070, China)

Abstract

Due to rapid urbanization and industrialization, China faces numerous environmental challenges, including air and water pollution, resource depletion, and climate change. Adopting green ICT and smart urbanization is a critical strategy to address these challenges. At the heart of this study lies the question: Do green ICT adoption and smart urbanization contribute positively to environmental pollution reduction? Therefore, this study intends to scrutinize the influence of green ICT and smart urbanization on environmental pollution in China, focusing on the period from 1996 to 2021. The most up-to-date method of structural modeling, partial least squares structural equation modeling (PLS-SEM), was used to estimate the quantitative connection between green ICT, smart urbanization, and environmental pollution. The findings of the structural model show that only the path coefficient between smart urbanization and environmental pollution is significant and negative. Renewable energy consumption directly and negatively influences environmental pollution, whereas smart urbanization directly and positively affects renewable energy consumption and green ICT. Consequently, renewable energy consumption and green ICT negatively influence environmental pollution. Based on the findings, the study proposes targeted public policy recommendations aimed at fostering the development of green ICT and smart urbanization initiatives in China.

Suggested Citation

  • Shiping Xu & Lili Wang, 2023. "Do Green Information and Communication Technologies (ICT) and Smart Urbanization Reduce Environmental Pollution in China?," Sustainability, MDPI, vol. 15(19), pages 1-18, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14492-:d:1253784
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/19/14492/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/19/14492/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Peng & Li, Zeyun & Ghardallou, Wafa & Xin, Yan & Cao, Jie, 2023. "Nexus of institutional quality and technological innovation on renewable energy development: Moderating role of green finance," Renewable Energy, Elsevier, vol. 214(C), pages 233-241.
    2. Benzidia, Smail & Makaoui, Naouel & Bentahar, Omar, 2021. "The impact of big data analytics and artificial intelligence on green supply chain process integration and hospital environmental performance," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    3. Danks, Nicholas P. & Sharma, Pratyush N. & Sarstedt, Marko, 2020. "Model selection uncertainty and multimodel inference in partial least squares structural equation modeling (PLS-SEM)," Journal of Business Research, Elsevier, vol. 113(C), pages 13-24.
    4. Muhammad Hafeez & Saif Ur Rehman & C. M. Nadeem Faisal & Juan Yang & Sana Ullah & Md. Abdul Kaium & Muhammad Yousaf Malik, 2022. "Financial Efficiency and Its Impact on Renewable Energy Demand and CO 2 Emissions: Do Eco-Innovations Matter for Highly Polluted Asian Economies?," Sustainability, MDPI, vol. 14(17), pages 1-12, September.
    5. Guo, Qingbin & Wang, Yong & Dong, Xiaobin, 2022. "Effects of smart city construction on energy saving and CO2 emission reduction: Evidence from China," Applied Energy, Elsevier, vol. 313(C).
    6. Uddin, Mueen & Darabidarabkhani, Yasaman & Shah, Asadullah & Memon, Jamshed, 2015. "Evaluating power efficient algorithms for efficiency and carbon emissions in cloud data centers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1553-1563.
    7. Liu, Feiqi & Zhao, Fuquan & Liu, Zongwei & Hao, Han, 2019. "Can autonomous vehicle reduce greenhouse gas emissions? A country-level evaluation," Energy Policy, Elsevier, vol. 132(C), pages 462-473.
    8. Asongu, Simplice A. & Le Roux, Sara & Biekpe, Nicholas, 2018. "Enhancing ICT for environmental sustainability in sub-Saharan Africa," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 209-216.
    9. M. Usman Saleem & Mustafa Shakir & M. Rehan Usman & M. Hamza Tahir Bajwa & Noman Shabbir & Payam Shams Ghahfarokhi & Kamran Daniel, 2023. "Integrating Smart Energy Management System with Internet of Things and Cloud Computing for Efficient Demand Side Management in Smart Grids," Energies, MDPI, vol. 16(12), pages 1-21, June.
    10. Matthew A. Cole & Eric Neumayer, 2003. "Examining the Impact of Demographic Factors On Air Pollution," Labor and Demography 0312005, University Library of Munich, Germany, revised 13 May 2004.
    11. Talbi, Besma, 2017. "CO2 emissions reduction in road transport sector in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 232-238.
    12. Dogan, Eyup & Seker, Fahri, 2016. "The influence of real output, renewable and non-renewable energy, trade and financial development on carbon emissions in the top renewable energy countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1074-1085.
    13. Avom, Désiré & Nkengfack, Hilaire & Fotio, Hervé Kaffo & Totouom, Armand, 2020. "ICT and environmental quality in Sub-Saharan Africa: Effects and transmission channels," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    14. Smaïl Benzidia & Naouel Makaoui & Omar Bentahar, 2021. "The impact of big data analytics and artificial intelligence on green supply chain process integration and hospital environmental performance," Post-Print hal-03028127, HAL.
    15. Wu, Haitao & Hao, Yu & Ren, Siyu & Yang, Xiaodong & Xie, Guo, 2021. "Does internet development improve green total factor energy efficiency? Evidence from China," Energy Policy, Elsevier, vol. 153(C).
    16. Moneim Massar & Imran Reza & Syed Masiur Rahman & Sheikh Muhammad Habib Abdullah & Arshad Jamal & Fahad Saleh Al-Ismail, 2021. "Impacts of Autonomous Vehicles on Greenhouse Gas Emissions—Positive or Negative?," IJERPH, MDPI, vol. 18(11), pages 1-23, May.
    17. Powell, Siobhan & Kara, Emre Can & Sevlian, Raffi & Cezar, Gustavo Vianna & Kiliccote, Sila & Rajagopal, Ram, 2020. "Controlled workplace charging of electric vehicles: The impact of rate schedules on transformer aging," Applied Energy, Elsevier, vol. 276(C).
    18. Ben Lahouel, Béchir & Taleb, Lotfi & Ben Zaied, Younes & Managi, Shunsuke, 2021. "Does ICT change the relationship between total factor productivity and CO2 emissions? Evidence based on a nonlinear model," Energy Economics, Elsevier, vol. 101(C).
    19. Sadorsky, Perry, 2014. "The effect of urbanization on CO2 emissions in emerging economies," Energy Economics, Elsevier, vol. 41(C), pages 147-153.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charfeddine, Lanouar & Umlai, Mohamed, 2023. "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    2. Emad Kazemzadeh & José Alberto Fuinhas & Narges Salehnia & Fariba Osmani, 2023. "The effect of economic complexity, fertility rate, and information and communication technology on ecological footprint in the emerging economies: a two-step stirpat model and panel quantile regressio," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(1), pages 737-763, February.
    3. Alataş, Sedat, 2022. "Do environmental technologies help to reduce transport sector CO2 emissions? Evidence from the EU15 countries," Research in Transportation Economics, Elsevier, vol. 91(C).
    4. Yan Lv & Weisong Li & Yawen Xu & Muhammad Tayyab Sohail, 2023. "China’s Pathway to a Low Carbon Economy: Exploring the Influence of Urbanization on Environmental Sustainability in the Digital Era," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    5. Bakry, Walid & Mallik, Girijasankar & Nghiem, Xuan-Hoa & Sinha, Avik & Vo, Xuan Vinh, 2023. "Is green finance really “green”? Examining the long-run relationship between green finance, renewable energy and environmental performance in developing countries," Renewable Energy, Elsevier, vol. 208(C), pages 341-355.
    6. Tang, Chang & Xue, Yan & Wu, Haitao & Irfan, Muhammad & Hao, Yu, 2022. "How does telecommunications infrastructure affect eco-efficiency? Evidence from a quasi-natural experiment in China," Technology in Society, Elsevier, vol. 69(C).
    7. Ma, Jinjin & Yang, Lin & Wang, Donghan & Li, Yiming & Xie, Zuomiao & Lv, Haodong & Woo, Donghyup, 2024. "Digitalization in response to carbon neutrality: Mechanisms, effects and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    8. Zhong, Mei-Rui & Cao, Meng-Yuan & Zou, Han, 2022. "The carbon reduction effect of ICT: A perspective of factor substitution," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    9. Li Li & Weimin Li, 2022. "The Promoting Effect of Green Technology Innovations on Sustainable Supply Chain Development: Evidence from China’s Transport Sector," Sustainability, MDPI, vol. 14(8), pages 1-16, April.
    10. Zhang, Junjie & Yu, Shiwei & Xiong, Xingyi & Hu, Xing, 2024. "Impacts of ICT penetration shaping nonworking time use on indirect carbon emissions: Evidence from Chinese households," Energy Economics, Elsevier, vol. 129(C).
    11. Junhong Qu & Xiaoli Hao, 2022. "Digital Economy, Financial Development, and Energy Poverty Based on Mediating Effects and a Spatial Autocorrelation Model," Sustainability, MDPI, vol. 14(15), pages 1-24, July.
    12. Zhongwei, Huang & Liu, Yishu, 2022. "The role of eco-innovations, trade openness, and human capital in sustainable renewable energy consumption: Evidence using CS-ARDL approach," Renewable Energy, Elsevier, vol. 201(P1), pages 131-140.
    13. Li, Kunming & Fang, Liting & He, Lerong, 2019. "How population and energy price affect China's environmental pollution?," Energy Policy, Elsevier, vol. 129(C), pages 386-396.
    14. Reham Alhindawi & Yousef Abu Nahleh & Arun Kumar & Nirajan Shiwakoti, 2020. "Projection of Greenhouse Gas Emissions for the Road Transport Sector Based on Multivariate Regression and the Double Exponential Smoothing Model," Sustainability, MDPI, vol. 12(21), pages 1-18, November.
    15. Chenhao Zhu & Jonah Susskind & Mario Giampieri & Hazel Backus O’Neil & Alan M. Berger, 2023. "Optimizing Sustainable Suburban Expansion with Autonomous Mobility through a Parametric Design Framework," Land, MDPI, vol. 12(9), pages 1-31, September.
    16. Opoku, Eric Evans Osei & Boachie, Micheal Kofi, 2020. "The environmental impact of industrialization and foreign direct investment," Energy Policy, Elsevier, vol. 137(C).
    17. Chien, Fengsheng & Anwar, Ahsan & Hsu, Ching-Chi & Sharif, Arshian & Razzaq, Asif & Sinha, Avik, 2021. "The role of information and communication technology in encountering environmental degradation: Proposing an SDG framework for the BRICS countries," Technology in Society, Elsevier, vol. 65(C).
    18. Bacha, Radia & Gasmi, Farid, 2022. "The broadband diffusion process and its determinants in Algeria: A simultaneous estimation," TSE Working Papers 22-1309, Toulouse School of Economics (TSE).
    19. Pei Zhang & Peiran Chen & Fan Xiao & Yong Sun & Shuyan Ma & Ziwei Zhao, 2022. "The Impact of Information Infrastructure on Air Pollution: Empirical Evidence from China," IJERPH, MDPI, vol. 19(21), pages 1-17, November.
    20. Zihanxin Li & Nuoyan Li & Huwei Wen, 2021. "Digital Economy and Environmental Quality: Evidence from 217 Cities in China," Sustainability, MDPI, vol. 13(14), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14492-:d:1253784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.