IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13847-d1242027.html
   My bibliography  Save this article

Machine Learning Assessment of Damage Grade for Post-Earthquake Buildings: A Three-Stage Approach Directly Handling Categorical Features

Author

Listed:
  • Yutao Li

    (School of Civil Engineering, Chongqing University, Chongqing 400045, China)

  • Chuanguo Jia

    (School of Civil Engineering, Chongqing University, Chongqing 400045, China
    Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing 400045, China)

  • Hong Chen

    (School of Computer Science and Engineering, Beihang University, Beijing 100191, China
    State Key Lab of Software Development Environment, Beihang University, Beijing 100191, China)

  • Hongchen Su

    (School of Civil Engineering, Chongqing University, Chongqing 400045, China)

  • Jiahao Chen

    (School of Civil Engineering, Chongqing University, Chongqing 400045, China)

  • Duoduo Wang

    (School of Civil Engineering, Chongqing University, Chongqing 400045, China)

Abstract

The rapid assessment of post-earthquake building damage for rescue and reconstruction is a crucial strategy to reduce the enormous number of human casualties and economic losses caused by earthquakes. Conventional machine learning (ML) approaches for this problem usually employ one-hot encoding to cope with categorical features, and their overall procedure is neither sufficient nor comprehensive. Therefore, this study proposed a three-stage approach, which can directly handle categorical features and enhance the entire methodology of ML applications. In stage I, an integrated data preprocessing framework involving subjective–objective feature selection was proposed and performed on a dataset of buildings after the 2015 Gorkha earthquake. In stage II, four machine learning models, KNN, XGBoost, CatBoost, and LightGBM, were trained and tested on the dataset. The best model was judged by comprehensive metrics, including the proposed risk coefficient. In stage III, the feature importance, the relationships between the features and the model’s output, and the feature interaction effects were investigated by Shapley additive explanations. The results indicate that the LightGBM model has the best overall performance with the highest accuracy of 0.897, the lowest risk coefficient of 0.042, and the shortest training time of 12.68 s due to its relevant algorithms for directly tackling categorical features. As for its interpretability, the most important features are determined, and information on these features’ impacts and interactions is obtained to improve the reliability of and promote practical engineering applications for the ML models. The proposed three-stage approach can provide a reference for the overall ML implementation process on raw datasets for similar problems.

Suggested Citation

  • Yutao Li & Chuanguo Jia & Hong Chen & Hongchen Su & Jiahao Chen & Duoduo Wang, 2023. "Machine Learning Assessment of Damage Grade for Post-Earthquake Buildings: A Three-Stage Approach Directly Handling Categorical Features," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13847-:d:1242027
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13847/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13847/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bubryur Kim & Dong-Eun Lee & Gang Hu & Yuvaraj Natarajan & Sri Preethaa & Arun Pandian Rathinakumar, 2022. "Ensemble Machine Learning-Based Approach for Predicting of FRP–Concrete Interfacial Bonding," Mathematics, MDPI, vol. 10(2), pages 1-22, January.
    2. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    3. Ying Liu & Haoran Zhao & Jieguang Sun & Yahui Tang, 2022. "Digital Inclusive Finance and Family Wealth: Evidence from LightGBM Approach," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    4. Rimsha Asad & Saud Altaf & Shafiq Ahmad & Adamali Shah Noor Mohamed & Shamsul Huda & Sofia Iqbal, 2023. "Achieving Personalized Precision Education Using the Catboost Model during the COVID-19 Lockdown Period in Pakistan," Sustainability, MDPI, vol. 15(3), pages 1-22, February.
    5. Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
    6. Lina Han & Qing Ma & Feng Zhang & Yichen Zhang & Jiquan Zhang & Yongbin Bao & Jing Zhao, 2019. "Risk Assessment of An Earthquake-Collapse-Landslide Disaster Chain by Bayesian Network and Newmark Models," IJERPH, MDPI, vol. 16(18), pages 1-17, September.
    7. Weizhang Liang & Suizhi Luo & Guoyan Zhao & Hao Wu, 2020. "Predicting Hard Rock Pillar Stability Using GBDT, XGBoost, and LightGBM Algorithms," Mathematics, MDPI, vol. 8(5), pages 1-17, May.
    8. Thi-Thu-Huong Le & Yustus Eko Oktian & Howon Kim, 2022. "XGBoost for Imbalanced Multiclass Classification-Based Industrial Internet of Things Intrusion Detection Systems," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
    9. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    10. Bing Xu & Youcheng Tan & Weibang Sun & Tianxing Ma & Hengyu Liu & Daguo Wang, 2023. "Study on the Prediction of the Uniaxial Compressive Strength of Rock Based on the SSA-XGBoost Model," Sustainability, MDPI, vol. 15(6), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthias Bogaert & Michel Ballings & Martijn Hosten & Dirk Van den Poel, 2017. "Identifying Soccer Players on Facebook Through Predictive Analytics," Decision Analysis, INFORMS, vol. 14(4), pages 274-297, December.
    2. Niaz Muhammad Shahani & Xigui Zheng & Xiaowei Guo & Xin Wei, 2022. "Machine Learning-Based Intelligent Prediction of Elastic Modulus of Rocks at Thar Coalfield," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    3. Mansoor, Umer & Jamal, Arshad & Su, Junbiao & Sze, N.N. & Chen, Anthony, 2023. "Investigating the risk factors of motorcycle crash injury severity in Pakistan: Insights and policy recommendations," Transport Policy, Elsevier, vol. 139(C), pages 21-38.
    4. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    5. Asma Shaheen & Javed Iqbal, 2018. "Spatial Distribution and Mobility Assessment of Carcinogenic Heavy Metals in Soil Profiles Using Geostatistics and Random Forest, Boruta Algorithm," Sustainability, MDPI, vol. 10(3), pages 1-20, March.
    6. Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
    7. Sezer Kanbul & Idris Adamu & Yakubu Bala Mohammed, 2024. "A Global Outlook on AI-Predicted Impacts of ChatGPT on Contemporary Education," SAGE Open, , vol. 14(3), pages 21582440241, August.
    8. Nahushananda Chakravarthy H G & Karthik M Seenappa & Sujay Raghavendra Naganna & Dayananda Pruthviraja, 2023. "Machine Learning Models for the Prediction of the Compressive Strength of Self-Compacting Concrete Incorporating Incinerated Bio-Medical Waste Ash," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    9. Tim Voigt & Martin Kohlhase & Oliver Nelles, 2021. "Incremental DoE and Modeling Methodology with Gaussian Process Regression: An Industrially Applicable Approach to Incorporate Expert Knowledge," Mathematics, MDPI, vol. 9(19), pages 1-26, October.
    10. Yanqi Gong & Chunyi Wang & Hongxuan Fu & Sandylove Afrane & Pingjian Yang & Jian-Lin Chen & Guozhu Mao, 2025. "Spatiotemporal Analysis and Prediction of Avian Migration Under Climate Change," Sustainability, MDPI, vol. 17(7), pages 1-27, March.
    11. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    12. Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
    13. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    14. Zhang, Ning & Li, Zhiying & Zou, Xun & Quiring, Steven M., 2019. "Comparison of three short-term load forecast models in Southern California," Energy, Elsevier, vol. 189(C).
    15. Smyl, Slawek & Hua, N. Grace, 2019. "Machine learning methods for GEFCom2017 probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1424-1431.
    16. Barzin,Samira & Avner,Paolo & Maruyama Rentschler,Jun Erik & O’Clery,Neave, 2022. "Where Are All the Jobs ? A Machine Learning Approach for High Resolution Urban Employment Prediction inDeveloping Countries," Policy Research Working Paper Series 9979, The World Bank.
    17. Mingfei Li & Jiajian Wu & Zhengpeng Chen & Jiangbo Dong & Zhiping Peng & Kai Xiong & Mumin Rao & Chuangting Chen & Xi Li, 2022. "Data-Driven Voltage Prognostic for Solid Oxide Fuel Cell System Based on Deep Learning," Energies, MDPI, vol. 15(17), pages 1-20, August.
    18. Eike Emrich & Christian Pierdzioch, 2016. "Volunteering, Match Quality, and Internet Use," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 136(2), pages 199-226.
    19. Shang, Xiaobing & Su, Li & Fang, Hai & Zeng, Bowen & Zhang, Zhi, 2023. "An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    20. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "On-line monitoring of power curves," Renewable Energy, Elsevier, vol. 34(6), pages 1487-1493.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13847-:d:1242027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.