IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i5p765-d356579.html
   My bibliography  Save this article

Predicting Hard Rock Pillar Stability Using GBDT, XGBoost, and LightGBM Algorithms

Author

Listed:
  • Weizhang Liang

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China
    The Robert M. Buchan Department of Mining, Queen’s University, Kingston, ON K7L 3N6, Canada)

  • Suizhi Luo

    (College of Systems Engineering, National University of Defense Technology, Changsha 410073, China)

  • Guoyan Zhao

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

  • Hao Wu

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

Abstract

Predicting pillar stability is a vital task in hard rock mines as pillar instability can cause large-scale collapse hazards. However, it is challenging because the pillar stability is affected by many factors. With the accumulation of pillar stability cases, machine learning (ML) has shown great potential to predict pillar stability. This study aims to predict hard rock pillar stability using gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), and light gradient boosting machine (LightGBM) algorithms. First, 236 cases with five indicators were collected from seven hard rock mines. Afterwards, the hyperparameters of each model were tuned using a five-fold cross validation (CV) approach. Based on the optimal hyperparameters configuration, prediction models were constructed using training set (70% of the data). Finally, the test set (30% of the data) was adopted to evaluate the performance of each model. The precision, recall, and F 1 indexes were utilized to analyze prediction results of each level, and the accuracy and their macro average values were used to assess the overall prediction performance. Based on the sensitivity analysis of indicators, the relative importance of each indicator was obtained. In addition, the safety factor approach and other ML algorithms were adopted as comparisons. The results showed that GBDT, XGBoost, and LightGBM algorithms achieved a better comprehensive performance, and their prediction accuracies were 0.8310, 0.8310, and 0.8169, respectively. The average pillar stress and ratio of pillar width to pillar height had the most important influences on prediction results. The proposed methodology can provide a reliable reference for pillar design and stability risk management.

Suggested Citation

  • Weizhang Liang & Suizhi Luo & Guoyan Zhao & Hao Wu, 2020. "Predicting Hard Rock Pillar Stability Using GBDT, XGBoost, and LightGBM Algorithms," Mathematics, MDPI, vol. 8(5), pages 1-17, May.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:5:p:765-:d:356579
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/5/765/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/5/765/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jian Zhou & Xibing Li & Hani Mitri, 2015. "Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 291-316, October.
    2. Maxime Cauvin & Thierry Verdel & Romuald Salmon, 2009. "Modeling Uncertainties in Mining Pillar Stability Analysis," Risk Analysis, John Wiley & Sons, vol. 29(10), pages 1371-1380, October.
    3. L. Lombardo & M. Cama & C. Conoscenti & M. Märker & E. Rotigliano, 2015. "Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messi," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1621-1648, December.
    4. Yuejin Zhou & Meng Li & Xiaoding Xu & Xiaotong Li & Yongdong Ma & Zhanguo Ma, 2018. "Research on Catastrophic Pillar Instability in Room and Pillar Gypsum Mining," Sustainability, MDPI, vol. 10(10), pages 1-11, October.
    5. Yoonsuh Jung, 2018. "Multiple predicting K-fold cross-validation for model selection," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 30(1), pages 197-215, January.
    6. Shruti Sachdeva & Tarunpreet Bhatia & A. K. Verma, 2018. "GIS-based evolutionary optimized Gradient Boosted Decision Trees for forest fire susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1399-1418, July.
    7. Ebrahim Ghasemi & Mohammad Ataei & Kourosh Shahriar, 2014. "Prediction of global stability in room and pillar coal mines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 405-422, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ning Li & Masoud Zare & Congke Yi & Rafael Jimenez, 2022. "Stability Risk Assessment of Underground Rock Pillars Using Logistic Model Trees," IJERPH, MDPI, vol. 19(4), pages 1-19, February.
    2. Zongguo Zhang & Xianyang Qiu & Xiuzhi Shi & Zhi Yu, 2023. "Chamber roof deformation prediction and analysis of underground mining using experimental design methodologies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 757-777, January.
    3. Al-Amin Abba Dabo & Amin Hosseinian-Far, 2023. "An Integrated Methodology for Enhancing Reverse Logistics Flows and Networks in Industry 5.0," Logistics, MDPI, vol. 7(4), pages 1-26, December.
    4. Chao Chen & Jian Zhou & Tao Zhou & Weixun Yong, 2021. "Evaluation of vertical shaft stability in underground mines: comparison of three weight methods with uncertainty theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1457-1479, November.
    5. N Salet & A Gökdemir & J Preijde & C H van Heck & F Eijkenaar, 2024. "Using machine learning to predict acute myocardial infarction and ischemic heart disease in primary care cardiovascular patients," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-17, July.
    6. Farzaneh Noroozi & Gholamabbas Ghanbarian & Roja Safaeian & Hamid Reza Pourghasemi, 2024. "Forest fire mapping: a comparison between GIS-based random forest and Bayesian models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(7), pages 6569-6592, May.
    7. Shruti Sachdeva & Tarunpreet Bhatia & A. K. Verma, 2018. "GIS-based evolutionary optimized Gradient Boosted Decision Trees for forest fire susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1399-1418, July.
    8. Shruti Sachdeva & Bijendra Kumar, 2020. "A Comparative Study between Frequency Ratio Model and Gradient Boosted Decision Trees with Greedy Dimensionality Reduction in Groundwater Potential Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4593-4615, December.
    9. Nicola Baldo & Matteo Miani & Fabio Rondinella & Clara Celauro, 2021. "A Machine Learning Approach to Determine Airport Asphalt Concrete Layer Moduli Using Heavy Weight Deflectometer Data," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    10. Mohamad Khoirun Najib & Sri Nurdiati & Ardhasena Sopaheluwakan, 2022. "Multivariate fire risk models using copula regression in Kalimantan, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1263-1283, September.
    11. Muhammad Ali & Naseer Muhammad Khan & Qiangqiang Gao & Kewang Cao & Danial Jahed Armaghani & Saad S. Alarifi & Hafeezur Rehman & Izhar Mithal Jiskani, 2023. "Prediction of Coal Dilatancy Point Using Acoustic Emission Characteristics: Insight Experimental and Artificial Intelligence Approaches," Mathematics, MDPI, vol. 11(6), pages 1-25, March.
    12. Chongchong Qi & Andy Fourie & Xuhao Du & Xiaolin Tang, 2018. "Prediction of open stope hangingwall stability using random forests," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 1179-1197, June.
    13. Haoyuan Hong & Himan Shahabi & Ataollah Shirzadi & Wei Chen & Kamran Chapi & Baharin Bin Ahmad & Majid Shadman Roodposhti & Arastoo Yari Hesar & Yingying Tian & Dieu Tien Bui, 2019. "Landslide susceptibility assessment at the Wuning area, China: a comparison between multi-criteria decision making, bivariate statistical and machine learning methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 173-212, March.
    14. Jones, Sara Sharon & Matsala, Maksym & Delin, Emily Viola & Subramanian, Narayanan & Nilsson, Urban & Holmström, Emma & Drobyshev, Igor, 2025. "Forest structure, roads and soil moisture provide realistic predictions of fire spread in modern Swedish landscape," Ecological Modelling, Elsevier, vol. 499(C).
    15. Osama Ashraf Mohammed & Sasan Vafaei & Mehdi Mirzaei Kurdalivand & Sabri Rasooli & Chaolong Yao & Tongxin Hu, 2022. "A Comparative Study of Forest Fire Mapping Using GIS-Based Data Mining Approaches in Western Iran," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
    16. Ahmed Salih Mohammed & Panagiotis G. Asteris & Mohammadreza Koopialipoor & Dimitrios E. Alexakis & Minas E. Lemonis & Danial Jahed Armaghani, 2021. "Stacking Ensemble Tree Models to Predict Energy Performance in Residential Buildings," Sustainability, MDPI, vol. 13(15), pages 1-22, July.
    17. Weizhang Liang & Asli Sari & Guoyan Zhao & Stephen D. McKinnon & Hao Wu, 2020. "Short-term rockburst risk prediction using ensemble learning methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1923-1946, November.
    18. Jiachuang Wang & Haoji Ma & Xianhang Yan, 2023. "Rockburst Intensity Classification Prediction Based on Multi-Model Ensemble Learning Algorithms," Mathematics, MDPI, vol. 11(4), pages 1-29, February.
    19. Maria Karpouza & Konstantinos Chousianitis & George D. Bathrellos & Hariklia D. Skilodimou & George Kaviris & Assimina Antonarakou, 2021. "Hazard zonation mapping of earthquake-induced secondary effects using spatial multi-criteria analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 637-669, October.
    20. Mohammad Arab Amiri & Christian Conoscenti, 2017. "Landslide susceptibility mapping using precipitation data, Mazandaran Province, north of Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 255-273, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:5:p:765-:d:356579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.