IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0307099.html
   My bibliography  Save this article

Using machine learning to predict acute myocardial infarction and ischemic heart disease in primary care cardiovascular patients

Author

Listed:
  • N Salet
  • A Gökdemir
  • J Preijde
  • C H van Heck
  • F Eijkenaar

Abstract

Background: Early recognition, which preferably happens in primary care, is the most important tool to combat cardiovascular disease (CVD). This study aims to predict acute myocardial infarction (AMI) and ischemic heart disease (IHD) using Machine Learning (ML) in primary care cardiovascular patients. We compare the ML-models’ performance with that of the common SMART algorithm and discuss clinical implications. Methods and results: Patient-level medical record data (n = 13,218) collected between 2011–2021 from 90 GP-practices were used to construct two random forest models (one for AMI and one for IHD) as well as a linear model based on the SMART risk prediction algorithm as a suitable comparator. The data contained patient-level predictors, including demographics, procedures, medications, biometrics, and diagnosis. Temporal cross-validation was used to assess performance. Furthermore, predictors that contributed most to the ML-models’ accuracy were identified. Conclusion: Our findings underline the potential of using ML for CVD prediction purposes in primary care, although the interpretation of predictors can be difficult. Clinicians, patients, and researchers might benefit from transitioning to using ML-models in support of individualized predictions by primary care physicians and subsequent (secondary) prevention.

Suggested Citation

  • N Salet & A Gökdemir & J Preijde & C H van Heck & F Eijkenaar, 2024. "Using machine learning to predict acute myocardial infarction and ischemic heart disease in primary care cardiovascular patients," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-17, July.
  • Handle: RePEc:plo:pone00:0307099
    DOI: 10.1371/journal.pone.0307099
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0307099
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0307099&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0307099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stephen F Weng & Jenna Reps & Joe Kai & Jonathan M Garibaldi & Nadeem Qureshi, 2017. "Can machine-learning improve cardiovascular risk prediction using routine clinical data?," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-14, April.
    2. Fatemeh Rahimian & Gholamreza Salimi-Khorshidi & Amir H Payberah & Jenny Tran & Roberto Ayala Solares & Francesca Raimondi & Milad Nazarzadeh & Dexter Canoy & Kazem Rahimi, 2018. "Predicting the risk of emergency admission with machine learning: Development and validation using linked electronic health records," PLOS Medicine, Public Library of Science, vol. 15(11), pages 1-18, November.
    3. Yoonsuh Jung, 2018. "Multiple predicting K-fold cross-validation for model selection," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 30(1), pages 197-215, January.
    4. Yoonsuh Jung & Jianhua Hu, 2015. "A K -fold averaging cross-validation procedure," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(2), pages 167-179, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salvatore Tedesco & Martina Andrulli & Markus Åkerlund Larsson & Daniel Kelly & Antti Alamäki & Suzanne Timmons & John Barton & Joan Condell & Brendan O’Flynn & Anna Nordström, 2021. "Comparison of Machine Learning Techniques for Mortality Prediction in a Prospective Cohort of Older Adults," IJERPH, MDPI, vol. 18(23), pages 1-18, December.
    2. Ying Wang & Zhicheng Du & Wayne R. Lawrence & Yun Huang & Yu Deng & Yuantao Hao, 2019. "Predicting Hepatitis B Virus Infection Based on Health Examination Data of Community Population," IJERPH, MDPI, vol. 16(23), pages 1-13, December.
    3. Nicola Baldo & Matteo Miani & Fabio Rondinella & Clara Celauro, 2021. "A Machine Learning Approach to Determine Airport Asphalt Concrete Layer Moduli Using Heavy Weight Deflectometer Data," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    4. Shelda Sajeev & Stephanie Champion & Alline Beleigoli & Derek Chew & Richard L. Reed & Dianna J. Magliano & Jonathan E. Shaw & Roger L. Milne & Sarah Appleton & Tiffany K. Gill & Anthony Maeder, 2021. "Predicting Australian Adults at High Risk of Cardiovascular Disease Mortality Using Standard Risk Factors and Machine Learning," IJERPH, MDPI, vol. 18(6), pages 1-14, March.
    5. José G Fuentes Cabrera & Hugo A Pérez Vicente & Sebastián Maldonado & Jonás Velasco, 2023. "Combination of unsupervised discretization methods for credit risk," PLOS ONE, Public Library of Science, vol. 18(11), pages 1-18, November.
    6. Woo Suk Hong & Adrian Daniel Haimovich & R Andrew Taylor, 2018. "Predicting hospital admission at emergency department triage using machine learning," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-13, July.
    7. Weizhang Liang & Asli Sari & Guoyan Zhao & Stephen D. McKinnon & Hao Wu, 2020. "Short-term rockburst risk prediction using ensemble learning methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1923-1946, November.
    8. Ryan P Strum & Fabrice I Mowbray & Manaf Zargoush & Aaron P Jones, 2023. "Prehospital prediction of hospital admission for emergent acuity patients transported by paramedics: A population-based cohort study using machine learning," PLOS ONE, Public Library of Science, vol. 18(8), pages 1-13, August.
    9. Jiachuang Wang & Haoji Ma & Xianhang Yan, 2023. "Rockburst Intensity Classification Prediction Based on Multi-Model Ensemble Learning Algorithms," Mathematics, MDPI, vol. 11(4), pages 1-29, February.
    10. Ram, Pappu Kalyan & Pandey, Neeraj & Persis, Jinil, 2024. "Modeling social coupon redemption decisions of consumers in food industry: A machine learning perspective," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    11. Nidadavolu Venkat Durga Sai Siva Vara Prasad Raju & Penmetsa Naveena Devi, 2024. "AI-Assisted Medical Imaging and Heart Disease Diagnosis: A Deep Learning Approach for Automated Analysis and Enhanced Prediction Using Ensemble Classifiers," Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023, Open Knowledge, vol. 6(1), pages 210-229.
    12. Hoa Thi Nguyen & Claudia M. Denkinger & Stephan Brenner & Lisa Koeppel & Lucia Brugnara & Robin Burk & Michael Knop & Till Bärnighausen & Andreas Deckert & Manuela De Allegri, 2023. "Cost and cost-effectiveness of four different SARS-CoV-2 active surveillance strategies: evidence from a randomised control trial in Germany," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 24(9), pages 1545-1559, December.
    13. Xingyu Li & Long Li & Longgao Chen & Ting Zhang & Jianying Xiao & Longqian Chen, 2022. "Random Forest Estimation and Trend Analysis of PM 2.5 Concentration over the Huaihai Economic Zone, China (2000–2020)," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    14. Sharan Srinivas, 2020. "A Machine Learning-Based Approach for Predicting Patient Punctuality in Ambulatory Care Centers," IJERPH, MDPI, vol. 17(10), pages 1-15, May.
    15. Szczygielski, Jan Jakub & Charteris, Ailie & Bwanya, Princess Rutendo & Brzeszczyński, Janusz, 2024. "Google search trends and stock markets: Sentiment, attention or uncertainty?," International Review of Financial Analysis, Elsevier, vol. 91(C).
    16. Syed Waseem Abbas Sherazi & Jang-Whan Bae & Jong Yun Lee, 2021. "A soft voting ensemble classifier for early prediction and diagnosis of occurrences of major adverse cardiovascular events for STEMI and NSTEMI during 2-year follow-up in patients with acute coronary ," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-20, June.
    17. Yang, Yadong & Shahbeik, Hossein & Shafizadeh, Alireza & Masoudnia, Nima & Rafiee, Shahin & Zhang, Yijia & Pan, Junting & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2022. "Biomass microwave pyrolysis characterization by machine learning for sustainable rural biorefineries," Renewable Energy, Elsevier, vol. 201(P2), pages 70-86.
    18. Hülya Yürekli & Öyküm Esra Yiğit & Okan Bulut & Min Lu & Ersoy Öz, 2022. "Exploring Factors That Affected Student Well-Being during the COVID-19 Pandemic: A Comparison of Data-Mining Approaches," IJERPH, MDPI, vol. 19(18), pages 1-16, September.
    19. Alexander Engels & Katrin C Reber & Ivonne Lindlbauer & Kilian Rapp & Gisela Büchele & Jochen Klenk & Andreas Meid & Clemens Becker & Hans-Helmut König, 2020. "Osteoporotic hip fracture prediction from risk factors available in administrative claims data – A machine learning approach," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-14, May.
    20. Pablo Gonzalez Ginestet & Ales Kotalik & David M. Vock & Julian Wolfson & Erin E. Gabriel, 2021. "Stacked inverse probability of censoring weighted bagging: A case study in the InfCareHIV Register," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 51-65, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0307099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.