IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i16p12135-d1213039.html
   My bibliography  Save this article

CO 2 Emissions from Plastic Consumption Behaviors in Thailand

Author

Listed:
  • Virin Kittithammavong

    (Department of Civil Engineering, Naresuan University, Phitsanulok 65000, Thailand)

  • Wilawan Khanitchaidecha

    (Department of Civil Engineering, Naresuan University, Phitsanulok 65000, Thailand)

  • Pajaree Thongsanit

    (Department of Civil Engineering, Naresuan University, Phitsanulok 65000, Thailand)

Abstract

Plastic waste is an environmental crisis that is becoming increasingly well-documented. The rapid expansion of plastic manufacturing and consumption has led to a harmful cycle of pollution and greenhouse gas emissions due to petroleum-based production and plastic waste disposal. Plastic production and disposal depend on the consumption behavior of people. This study aimed to examine the plastic consumption behavior in Thailand and its impact on climate change at the end-of-life stage. The general information, plastic consumption, and plastic waste management were collected via questionnaires for each product lifetime, including single-use, medium-use, and long-use plastics. Based on 567 questionnaires, the results showed that people consumed single-use plastic, e.g., plastic bag, food container, cutlery, straws, and bottles, at a rate of about nine pieces/household/day or three pieces/cap/day. The medium-use and long-use plastic were 10 pieces/household/month and 50 pieces/household/year, respectively. It should be remarked that population density, education, and number of household members affected plastic consumption behavior, especially for single-use plastic. Regarding the disposal of end-of-life plastics, Thai people, on average, contribute 0.15 kg CO 2 eq/household/day to climate change. Many households have mismanaged waste by open dumping and open burning. Therefore, practicing proper waste management will help Thailand on the path to carbon neutrality in the future.

Suggested Citation

  • Virin Kittithammavong & Wilawan Khanitchaidecha & Pajaree Thongsanit, 2023. "CO 2 Emissions from Plastic Consumption Behaviors in Thailand," Sustainability, MDPI, vol. 15(16), pages 1-18, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12135-:d:1213039
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/16/12135/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/16/12135/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luca Di Paolo & Simona Abbate & Eliseo Celani & Davide Di Battista & Giovanni Candeloro, 2022. "Carbon Footprint of Single-Use Plastic Items and Their Substitution," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    2. Malte Meinshausen & Nicolai Meinshausen & William Hare & Sarah C. B. Raper & Katja Frieler & Reto Knutti & David J. Frame & Myles R. Allen, 2009. "Greenhouse-gas emission targets for limiting global warming to 2 °C," Nature, Nature, vol. 458(7242), pages 1158-1162, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fankhauser, Samuel & Hepburn, Cameron, 2010. "Designing carbon markets. Part I: Carbon markets in time," Energy Policy, Elsevier, vol. 38(8), pages 4363-4370, August.
    2. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    3. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    4. Kriegler, Elmar, 2011. "Comment," Energy Economics, Elsevier, vol. 33(4), pages 594-596, July.
    5. Sam Fankhauser & Cameron Hepburn, 2009. "Carbon markets in space and time," GRI Working Papers 3, Grantham Research Institute on Climate Change and the Environment.
    6. van der Ploeg, Frederick & Rezai, Armon, 2017. "Cumulative emissions, unburnable fossil fuel, and the optimal carbon tax," Technological Forecasting and Social Change, Elsevier, vol. 116(C), pages 216-222.
    7. Waldemar Karpa & Antonio Grginović, 2021. "(Not So) Stranded: The Case of Coal in Poland," Energies, MDPI, vol. 14(24), pages 1-16, December.
    8. Colo, Philippe, 2021. "Cassandra's Curse: A Second Tragedy of the Commons," MPRA Paper 110878, University Library of Munich, Germany.
    9. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    10. Malik Curuk & Suphi Sen, 2023. "Climate Policy and Resource Extraction with Variable Markups and Imperfect Substitutes," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(4), pages 1091-1120.
    11. Daniel Johansson, 2011. "Temperature stabilization, ocean heat uptake and radiative forcing overshoot profiles," Climatic Change, Springer, vol. 108(1), pages 107-134, September.
    12. Laeven, Luc & Popov, Alexander, 2023. "Carbon taxes and the geography of fossil lending," Journal of International Economics, Elsevier, vol. 144(C).
    13. Jin Xue & Hans Jakob Walnum & Carlo Aall & Petter Næss, 2016. "Two Contrasting Scenarios for a Zero-Emission Future in a High-Consumption Society," Sustainability, MDPI, vol. 9(1), pages 1-25, December.
    14. Agliardi, Elettra & Xepapadeas, Anastasios, 2022. "Temperature targets, deep uncertainty and extreme events in the design of optimal climate policy," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    15. Song Gao, 2015. "Managing short-lived climate forcers in curbing climate change: an atmospheric chemistry synopsis," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(2), pages 130-137, June.
    16. Trowell, K.A. & Goroshin, S. & Frost, D.L. & Bergthorson, J.M., 2020. "Aluminum and its role as a recyclable, sustainable carrier of renewable energy," Applied Energy, Elsevier, vol. 275(C).
    17. Skidmore, Samuel & Santos, Paulo & Leimona, Beria, 2012. "Seeing REDD: A Microeconomic Analysis of Carbon Sequestration in Indonesia," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126688, International Association of Agricultural Economists.
    18. Antoine GODIN & Emanuele CAMPIGLIO & Eric KEMP-BENEDICT, 2017. "Networks of stranded assets: A case for a balance sheet approach," Working Paper d51a41b5-00ba-40b4-abe6-5, Agence française de développement.
    19. W. A. Brock & A. Xepapadeas, 2015. "Modeling Coupled Climate, Ecosystems, and Economic Systems," Working Papers 2015.66, Fondazione Eni Enrico Mattei.
    20. Linnenluecke, Martina K. & Smith, Tom & McKnight, Brent, 2016. "Environmental finance: A research agenda for interdisciplinary finance research," Economic Modelling, Elsevier, vol. 59(C), pages 124-130.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12135-:d:1213039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.