IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p9927-d1176466.html
   My bibliography  Save this article

Fuzzy Method to Improve Products and Processes Considering the Approach of Sustainable Development (FQE-SD Method)

Author

Listed:
  • Andrzej Pacana

    (Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powstancow Warszawy 12, 35-959 Rzeszow, Poland)

  • Dominika Siwiec

    (Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powstancow Warszawy 12, 35-959 Rzeszow, Poland)

  • Jacek Pacana

    (Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powstancow Warszawy 12, 35-959 Rzeszow, Poland)

Abstract

Assumptions of the concept of sustainable development should include actions towards the development of modern, well-managed enterprises. However, making decisions in this area is difficult as it often results from subjective assessments of environmental problems. Hence, there is a motivation to develop a method of analysing the search for solutions to environmental problems that supports decisions in the area of improving the quality of products or processes while considering their impacts on the natural environment. In view of the specification of this problem, it was considered that this method should be conducted in a fuzzy decision environment. This method is called FQE-SD (fuzzy qualitatively environmentally sustainable development). This method integrated, in a hybrid way, the selected tools or elements of qualitative and multi-criteria decision methods, i.e., using the SMARTER method, brainstorming (BM), a method to select the team of experts, the Pareto-Lorenz analysis, the fuzzy QE-FMEA method, and the fuzzy AHP method. The main contribution of the FQE-SD method is its hybrid methodology, which supports: (i) a coherent and objective approach during the identification, analyses, and ranking of the causes of incompatibility of products or processes and (ii) the realization of the sustainable development of products or processes. The method was tested using the magnetic-powder test (MT). This control was carried out for producers of an outer bearing made fromAMS6470 steel. The results of this work confirmed the practical possibilities of applying the FQE-SD method. This method can also be applied to other production situations, if appropriate assumptions are made.

Suggested Citation

  • Andrzej Pacana & Dominika Siwiec & Jacek Pacana, 2023. "Fuzzy Method to Improve Products and Processes Considering the Approach of Sustainable Development (FQE-SD Method)," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:9927-:d:1176466
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/9927/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/9927/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dominika Siwiec & Andrzej Pacana & Andrzej Gazda, 2023. "A New QFD-CE Method for Considering the Concept of Sustainable Development and Circular Economy," Energies, MDPI, vol. 16(5), pages 1-21, March.
    2. Dominika Siwiec & Andrzej Pacana, 2021. "A Pro-Environmental Method of Sample Size Determination to Predict the Quality Level of Products Considering Current Customers’ Expectations," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
    3. Grzegorz Ostasz & Dominika Siwiec & Andrzej Pacana, 2022. "Universal Model to Predict Expected Direction of Products Quality Improvement," Energies, MDPI, vol. 15(5), pages 1-18, February.
    4. Kaya, Tolga & Kahraman, Cengiz, 2010. "Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul," Energy, Elsevier, vol. 35(6), pages 2517-2527.
    5. Hari Darshan Arora & Anjali Naithani, 2023. "Some distance measures for triangular fuzzy numbers under technique for order of preference by similarity to ideal solution environment," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 701-719, June.
    6. Tien-Li Chen & Chin-Chuan Chen & Yen-Ching Chuang & James J. H. Liou, 2020. "A Hybrid MADM Model for Product Design Evaluation and Improvement," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    7. Edmundas Kazimieras Zavadskas & Kannan Govindan & Jurgita Antucheviciene & Zenonas Turskis, 2016. "Hybrid multiple criteria decision-making methods: a review of applications for sustainability issues," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 29(1), pages 857-887, January.
    8. Michal Gluszak & Remigiusz Gawlik & Malgorzata Zieba, 2019. "Smart and Green Buildings Features in the Decision-Making Hierarchy of Office Space Tenants: An Analytic Hierarchy Process Study," Administrative Sciences, MDPI, vol. 9(3), pages 1-16, July.
    9. Yauwseph Tandiono & Hsin Rau, 2022. "An Enhanced Model Using the Kano Model, QFDE, and TRIZ with a Component-Based Approach for Sustainable and Innovative Product Design," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    10. Andrzej Pacana & Dominika Siwiec, 2022. "Model to Predict Quality of Photovoltaic Panels Considering Customers’ Expectations," Energies, MDPI, vol. 15(3), pages 1-33, February.
    11. Saaty, Thomas L., 2003. "Decision-making with the AHP: Why is the principal eigenvector necessary," European Journal of Operational Research, Elsevier, vol. 145(1), pages 85-91, February.
    12. Torkayesh, Ali Ebadi & Rajaeifar, Mohammad Ali & Rostom, Madona & Malmir, Behnam & Yazdani, Morteza & Suh, Sangwon & Heidrich, Oliver, 2022. "Integrating life cycle assessment and multi criteria decision making for sustainable waste management: Key issues and recommendations for future studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    13. Cheng Siew Goh & Heap-Yih Chong, 2023. "Opportunities in the Sustainable Built Environment: Perspectives on Human-Centric Approaches," Energies, MDPI, vol. 16(3), pages 1-8, January.
    14. Dominika Siwiec & Andrzej Pacana, 2021. "Model Supporting Development Decisions by Considering Qualitative–Environmental Aspects," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    15. Abdul Zubar Hameed & Jayakrishna Kandasamy & Sakthivel Aravind Raj & Majed Abubakr Baghdadi & Muhammad Atif Shahzad, 2022. "Sustainable Product Development Using FMEA ECQFD TRIZ and Fuzzy TOPSIS," Sustainability, MDPI, vol. 14(21), pages 1-29, November.
    16. Shabana Parveen & Saleem Khan & Muhammad Abdul Kamal & Muhammad Ali Abbas & Aamir Aijaz Syed & Simon Grima, 2023. "The Influence of Industrial Output, Financial Development, and Renewable and Non-Renewable Energy on Environmental Degradation in Newly Industrialized Countries," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
    17. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Ulewicz & Dominika Siwiec & Andrzej Pacana, 2023. "A New Model of Pro-Quality Decision Making in Terms of Products’ Improvement Considering Customer Requirements," Energies, MDPI, vol. 16(11), pages 1-22, May.
    2. Tadeusz Olejarz & Dominika Siwiec & Andrzej Pacana, 2022. "Method of Qualitative–Environmental Choice of Devices Converting Green Energy," Energies, MDPI, vol. 15(23), pages 1-22, November.
    3. Robert Ulewicz & Dominika Siwiec & Andrzej Pacana, 2023. "Sustainable Vehicle Design Considering Quality Level and Life Cycle Environmental Assessment (LCA)," Energies, MDPI, vol. 16(24), pages 1-23, December.
    4. Dominika Siwiec & Andrzej Pacana & Andrzej Gazda, 2023. "A New QFD-CE Method for Considering the Concept of Sustainable Development and Circular Economy," Energies, MDPI, vol. 16(5), pages 1-21, March.
    5. Grzegorz Ostasz & Dominika Siwiec & Andrzej Pacana, 2022. "Universal Model to Predict Expected Direction of Products Quality Improvement," Energies, MDPI, vol. 15(5), pages 1-18, February.
    6. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    7. Alev Taskin Gumus & A. Yesim Yayla & Erkan Çelik & Aytac Yildiz, 2013. "A Combined Fuzzy-AHP and Fuzzy-GRA Methodology for Hydrogen Energy Storage Method Selection in Turkey," Energies, MDPI, vol. 6(6), pages 1-16, June.
    8. Wu, Yunna & Xu, Chuanbo & Zhang, Ting, 2018. "Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: A case in China," Energy, Elsevier, vol. 147(C), pages 1227-1239.
    9. Klaus D. Goepel, 2019. "Comparison of Judgment Scales of the Analytical Hierarchy Process — A New Approach," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 445-463, March.
    10. Kabir, Golam & Sumi, Razia Sultana, 2014. "Power substation location selection using fuzzy analytic hierarchy process and PROMETHEE: A case study from Bangladesh," Energy, Elsevier, vol. 72(C), pages 717-730.
    11. Murat İnce & Tuncay Yiğit & Ali Hakan Işik, 2020. "A Novel Hybrid Fuzzy AHP-GA Method for Test Sheet Question Selection," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 629-647, April.
    12. Paweł Ziemba, 2019. "Inter-Criteria Dependencies-Based Decision Support in the Sustainable wind Energy Management," Energies, MDPI, vol. 12(4), pages 1-29, February.
    13. Guorui Zhang & Enyuan Wang & Zhonghui Li & Ben Qin, 2022. "Risk assessment of coal and gas outburst in driving face based on finite interval cloud model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1969-1995, February.
    14. Osman Taylan & Rami Alamoudi & Mohammad Kabli & Alawi AlJifri & Fares Ramzi & Enrique Herrera-Viedma, 2020. "Assessment of Energy Systems Using Extended Fuzzy AHP, Fuzzy VIKOR, and TOPSIS Approaches to Manage Non-Cooperative Opinions," Sustainability, MDPI, vol. 12(7), pages 1-27, March.
    15. Seddiki, Mohammed & Bennadji, Amar, 2019. "Multi-criteria evaluation of renewable energy alternatives for electricity generation in a residential building," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 101-117.
    16. Dimitrios Dechouniotis & Ioannis Dimolitsas & Konstantinos Papadakis-Vlachopapadopoulos & Symeon Papavassiliou, 2018. "Fuzzy Multi-Criteria Based Trust Management in Heterogeneous Federated Future Internet Testbeds," Future Internet, MDPI, vol. 10(7), pages 1-17, June.
    17. Remigiusz Gawlik & Dominika Siwiec & Andrzej Pacana, 2024. "Quality–Cost–Environment Assessment of Sustainable Manufacturing of Photovoltaic Panels," Energies, MDPI, vol. 17(7), pages 1-17, March.
    18. Dominika Siwiec & Andrzej Pacana, 2021. "Model Supporting Development Decisions by Considering Qualitative–Environmental Aspects," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    19. Rajesh Kr Singh & Sachin Kumar Mangla & Manjot Singh Bhatia & Sunil Luthra, 2022. "Integration of green and lean practices for sustainable business management," Business Strategy and the Environment, Wiley Blackwell, vol. 31(1), pages 353-370, January.
    20. Amir Hossein Salimi & Amir Noori & Hossein Bonakdari & Jafar Masoompour Samakosh & Ehsan Sharifi & Mohammadreza Hassanvand & Baharam Gharabaghi & Mehdi Agharazi, 2020. "Exploring the Role of Advertising Types on Improving the Water Consumption Behavior: An Application of Integrated Fuzzy AHP and Fuzzy VIKOR Method," Sustainability, MDPI, vol. 12(3), pages 1-33, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:9927-:d:1176466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.