Model-Based Reinforcement Learning Method for Microgrid Optimization Scheduling
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Julian Schrittwieser & Ioannis Antonoglou & Thomas Hubert & Karen Simonyan & Laurent Sifre & Simon Schmitt & Arthur Guez & Edward Lockhart & Demis Hassabis & Thore Graepel & Timothy Lillicrap & David , 2020. "Mastering Atari, Go, chess and shogi by planning with a learned model," Nature, Nature, vol. 588(7839), pages 604-609, December.
- Alanne, Kari & Saari, Arto, 2006. "Distributed energy generation and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(6), pages 539-558, December.
- Zhenghang Song & Xiang Wang & Baoze Wei & Zhengyu Shan & Peiyuan Guan, 2023. "Distributed Finite-Time Cooperative Economic Dispatch Strategy for Smart Grid under DOS Attack," Mathematics, MDPI, vol. 11(9), pages 1-19, April.
- Banaei, Mohsen & Rezaee, Babak, 2018. "Fuzzy scheduling of a non-isolated micro-grid with renewable resources," Renewable Energy, Elsevier, vol. 123(C), pages 67-78.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Eid, Cherrelle & Codani, Paul & Perez, Yannick & Reneses, Javier & Hakvoort, Rudi, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 237-247.
- Funcke, Simon & Bauknecht, Dierk, 2016. "Typology of centralised and decentralised visions for electricity infrastructure," Utilities Policy, Elsevier, vol. 40(C), pages 67-74.
- Moroni, Stefano & Antoniucci, Valentina & Bisello, Adriano, 2016. "Energy sprawl, land taking and distributed generation: towards a multi-layered density," Energy Policy, Elsevier, vol. 98(C), pages 266-273.
- Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
- Anna Borkovcová & Miloslava Černá & Marcela Sokolová, 2022. "Blockchain in the Energy Sector—Systematic Review," Sustainability, MDPI, vol. 14(22), pages 1-12, November.
- Rishi Rajalingham & Aída Piccato & Mehrdad Jazayeri, 2022. "Recurrent neural networks with explicit representation of dynamic latent variables can mimic behavioral patterns in a physical inference task," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Valentina Costa & Federico Campanini, 2024. "Community-Centred Energy Planning: Within and beyond Administrative Borders," Sustainability, MDPI, vol. 16(5), pages 1-26, March.
- Botelho, D.F. & de Oliveira, L.W. & Dias, B.H. & Soares, T.A. & Moraes, C.A., 2022. "Prosumer integration into the Brazilian energy sector: An overview of innovative business models and regulatory challenges," Energy Policy, Elsevier, vol. 161(C).
- Razieh Nejabat & Marina Van Geenhuizen, 2019. "Entrepreneurial Risk-Taking in Sustainable Energy: University Spin-Off Firms and Market Introduction in Northwest Europe," Sustainability, MDPI, vol. 11(24), pages 1-23, December.
- Newbery, David & Pollitt, Michael G. & Ritz, Robert A. & Strielkowski, Wadim, 2018.
"Market design for a high-renewables European electricity system,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 695-707.
- Newbery, D. & Pollitt, M. & Ritz, R. & Strielkowski, W., 2017. "Market design for a high-renewables European electricity system," Cambridge Working Papers in Economics 1726, Faculty of Economics, University of Cambridge.
- David Newbery & Michael Pollitt & Robert Ritz & Wadim Strielkowski, 2017. "Market design for a high-renewables European electricity system," Working Papers EPRG 1711, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Pavirani, Fabio & Van Gompel, Jonas & Karimi Madahi, Seyed Soroush & Claessens, Bert & Develder, Chris, 2025. "Predicting and publishing accurate imbalance prices using Monte Carlo Tree Search," Applied Energy, Elsevier, vol. 392(C).
- Colmenar-Santos, Antonio & Reino-Rio, Cipriano & Borge-Diez, David & Collado-Fernández, Eduardo, 2016. "Distributed generation: A review of factors that can contribute most to achieve a scenario of DG units embedded in the new distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1130-1148.
- Sanya Carley & Richard Andrews, 2012. "Creating a sustainable U.S. electricity sector: the question of scale," Policy Sciences, Springer;Society of Policy Sciences, vol. 45(2), pages 97-121, June.
- Wouters, Carmen & Fraga, Eric S. & James, Adrian M., 2015. "An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – A South Australian case-study," Energy, Elsevier, vol. 85(C), pages 30-44.
- Rämä, M. & Mohammadi, S., 2017. "Comparison of distributed and centralised integration of solar heat in a district heating system," Energy, Elsevier, vol. 137(C), pages 649-660.
- Busch, Jonathan & Roelich, Katy & Bale, Catherine S.E. & Knoeri, Christof, 2017. "Scaling up local energy infrastructure; An agent-based model of the emergence of district heating networks," Energy Policy, Elsevier, vol. 100(C), pages 170-180.
- Hepbasli, Arif, 2008. "A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 593-661, April.
- Ren, Hongbo & Gao, Weijun, 2010. "A MILP model for integrated plan and evaluation of distributed energy systems," Applied Energy, Elsevier, vol. 87(3), pages 1001-1014, March.
- Fonseca, Juan D. & Commenge, Jean-Marc & Camargo, Mauricio & Falk, Laurent & Gil, Iván D., 2021. "Multi-criteria optimization for the design and operation of distributed energy systems considering sustainability dimensions," Energy, Elsevier, vol. 214(C).
- Omu, Akomeno & Choudhary, Ruchi & Boies, Adam, 2013. "Distributed energy resource system optimisation using mixed integer linear programming," Energy Policy, Elsevier, vol. 61(C), pages 249-266.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9235-:d:1165959. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i12p9235-d1165959.html