IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i12p9235-d1165959.html
   My bibliography  Save this article

Model-Based Reinforcement Learning Method for Microgrid Optimization Scheduling

Author

Listed:
  • Jinke Yao

    (Department of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

  • Jiachen Xu

    (Department of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

  • Ning Zhang

    (School of Electrical Engineering and Automation, Anhui University, Hefei 230601, China)

  • Yajuan Guan

    (Department of Energy, Aalborg University, 266100 Elburg, Denmark)

Abstract

Due to the uncertainty and randomness of clean energy, microgrid operation is often prone to instability, which requires the implementation of a robust and adaptive optimization scheduling method. In this paper, a model-based reinforcement learning algorithm is applied to the optimal scheduling problem of microgrids. During the training process, the current learned networks are used to assist Monte Carlo Tree Search (MCTS) in completing game history accumulation, and updating the learning network parameters to obtain optimal microgrid scheduling strategies and a simulated environmental dynamics model. We establish a microgrid environment simulator that includes Heating Ventilation Air Conditioning (HVAC) systems, Photovoltaic (PV) systems, and Energy Storage (ES) systems for simulation. The simulation results show that the operation of microgrids in both islanded and connected modes does not affect the training effectiveness of the algorithm. After 200 training steps, the algorithm can avoid the punishment of exceeding the red line of the bus voltage, and after 800 training steps, the training result converges and the loss values of the value and reward network converge to 0, showing good effectiveness. This proves that the algorithm proposed in this paper can be applied to the optimization scheduling problem of microgrids.

Suggested Citation

  • Jinke Yao & Jiachen Xu & Ning Zhang & Yajuan Guan, 2023. "Model-Based Reinforcement Learning Method for Microgrid Optimization Scheduling," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9235-:d:1165959
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/12/9235/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/12/9235/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Julian Schrittwieser & Ioannis Antonoglou & Thomas Hubert & Karen Simonyan & Laurent Sifre & Simon Schmitt & Arthur Guez & Edward Lockhart & Demis Hassabis & Thore Graepel & Timothy Lillicrap & David , 2020. "Mastering Atari, Go, chess and shogi by planning with a learned model," Nature, Nature, vol. 588(7839), pages 604-609, December.
    2. Alanne, Kari & Saari, Arto, 2006. "Distributed energy generation and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(6), pages 539-558, December.
    3. Zhenghang Song & Xiang Wang & Baoze Wei & Zhengyu Shan & Peiyuan Guan, 2023. "Distributed Finite-Time Cooperative Economic Dispatch Strategy for Smart Grid under DOS Attack," Mathematics, MDPI, vol. 11(9), pages 1-19, April.
    4. Banaei, Mohsen & Rezaee, Babak, 2018. "Fuzzy scheduling of a non-isolated micro-grid with renewable resources," Renewable Energy, Elsevier, vol. 123(C), pages 67-78.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eid, Cherrelle & Codani, Paul & Perez, Yannick & Reneses, Javier & Hakvoort, Rudi, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 237-247.
    2. Funcke, Simon & Bauknecht, Dierk, 2016. "Typology of centralised and decentralised visions for electricity infrastructure," Utilities Policy, Elsevier, vol. 40(C), pages 67-74.
    3. Moroni, Stefano & Antoniucci, Valentina & Bisello, Adriano, 2016. "Energy sprawl, land taking and distributed generation: towards a multi-layered density," Energy Policy, Elsevier, vol. 98(C), pages 266-273.
    4. Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
    5. Anna Borkovcová & Miloslava Černá & Marcela Sokolová, 2022. "Blockchain in the Energy Sector—Systematic Review," Sustainability, MDPI, vol. 14(22), pages 1-12, November.
    6. Rishi Rajalingham & Aída Piccato & Mehrdad Jazayeri, 2022. "Recurrent neural networks with explicit representation of dynamic latent variables can mimic behavioral patterns in a physical inference task," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Valentina Costa & Federico Campanini, 2024. "Community-Centred Energy Planning: Within and beyond Administrative Borders," Sustainability, MDPI, vol. 16(5), pages 1-26, March.
    8. Botelho, D.F. & de Oliveira, L.W. & Dias, B.H. & Soares, T.A. & Moraes, C.A., 2022. "Prosumer integration into the Brazilian energy sector: An overview of innovative business models and regulatory challenges," Energy Policy, Elsevier, vol. 161(C).
    9. Razieh Nejabat & Marina Van Geenhuizen, 2019. "Entrepreneurial Risk-Taking in Sustainable Energy: University Spin-Off Firms and Market Introduction in Northwest Europe," Sustainability, MDPI, vol. 11(24), pages 1-23, December.
    10. Newbery, David & Pollitt, Michael G. & Ritz, Robert A. & Strielkowski, Wadim, 2018. "Market design for a high-renewables European electricity system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 695-707.
    11. Pavirani, Fabio & Van Gompel, Jonas & Karimi Madahi, Seyed Soroush & Claessens, Bert & Develder, Chris, 2025. "Predicting and publishing accurate imbalance prices using Monte Carlo Tree Search," Applied Energy, Elsevier, vol. 392(C).
    12. Colmenar-Santos, Antonio & Reino-Rio, Cipriano & Borge-Diez, David & Collado-Fernández, Eduardo, 2016. "Distributed generation: A review of factors that can contribute most to achieve a scenario of DG units embedded in the new distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1130-1148.
    13. Sanya Carley & Richard Andrews, 2012. "Creating a sustainable U.S. electricity sector: the question of scale," Policy Sciences, Springer;Society of Policy Sciences, vol. 45(2), pages 97-121, June.
    14. Wouters, Carmen & Fraga, Eric S. & James, Adrian M., 2015. "An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – A South Australian case-study," Energy, Elsevier, vol. 85(C), pages 30-44.
    15. Rämä, M. & Mohammadi, S., 2017. "Comparison of distributed and centralised integration of solar heat in a district heating system," Energy, Elsevier, vol. 137(C), pages 649-660.
    16. Busch, Jonathan & Roelich, Katy & Bale, Catherine S.E. & Knoeri, Christof, 2017. "Scaling up local energy infrastructure; An agent-based model of the emergence of district heating networks," Energy Policy, Elsevier, vol. 100(C), pages 170-180.
    17. Hepbasli, Arif, 2008. "A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 593-661, April.
    18. Ren, Hongbo & Gao, Weijun, 2010. "A MILP model for integrated plan and evaluation of distributed energy systems," Applied Energy, Elsevier, vol. 87(3), pages 1001-1014, March.
    19. Fonseca, Juan D. & Commenge, Jean-Marc & Camargo, Mauricio & Falk, Laurent & Gil, Iván D., 2021. "Multi-criteria optimization for the design and operation of distributed energy systems considering sustainability dimensions," Energy, Elsevier, vol. 214(C).
    20. Omu, Akomeno & Choudhary, Ruchi & Boies, Adam, 2013. "Distributed energy resource system optimisation using mixed integer linear programming," Energy Policy, Elsevier, vol. 61(C), pages 249-266.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9235-:d:1165959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.