IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i10p8220-d1150053.html
   My bibliography  Save this article

Use of Analytic Hierarchy Process Method to Identify Potential Rainwater Harvesting Sites: Design and Financial Strategies in Taxco de Alarcón, Southern Mexico

Author

Listed:
  • Blanca Itzany Rivera Vázquez

    (Maestría en Recursos Naturales y Ecología, Facultad de Ecología Marina, Universidad Autónoma de Guerrero, Av. Gran Vía Tropical 20, Fraccionamiento Las Playas, Acapulco 39390, Guerrero, Mexico)

  • Edith Rosalba Salcedo Sánchez

    (Consejo Nacional de Ciencia y Tecnología, Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero, Ex-Hacienda de San Juan Bautista s/n, Taxco el Viejo 40323, Guerrero, Mexico)

  • Juan Manuel Esquivel Martínez

    (Consejo Nacional de Ciencia y Tecnología, Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero, Ex-Hacienda de San Juan Bautista s/n, Taxco el Viejo 40323, Guerrero, Mexico)

  • Miguel Ángel Gómez Albores

    (Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Universidad Autónoma del Estado de México, Ixtlahuaca de Rayón 110, Toluca de Lerdo 50110, Estado de Mexico, Mexico)

  • Felipe Gómez Noguez

    (Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Lázaro Cárdenas, El Centenario, Chilpancingo de los Bravo 39086, Guerrero, Mexico)

  • Carina Gutiérrez Flores

    (Consejo Nacional de Ciencia y Tecnología, Escuela Superior en Desarrollo Sustentable, Universidad Autónoma de Guerrero, Carretera Nacional Tecpan-Zihuatanejo, Col. Las Tunas, Tecpan de Galeana 40900, Guerrero, Mexico)

  • Oscar Talavera Mendoza

    (Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero, Ex-Hacienda San Juan Bautista s/n, Taxco el Viejo 40323, Guerrero, Mexico)

Abstract

Mexico is among the countries that are facing the greatest water stress, where factors such as climate change, contamination of surface water, groundwater sources, and inefficient management have limited the availability of water resources. Consequently, new supply sources need to be implemented. Rainwater harvesting systems (RHS) are viable and sustainable alternatives, the implementation of which primarily depends on identifying suitable sites and applying technologies that are appropriate for different users. This research used the Analytical Hierarchy Process (AHP) technique in a GIS environment to select the optimal sites for designing RHS, taking into account hydrological, biophysical, and socioeconomic criteria. After determining the ideal sites, the study presents proposals and costs for the design of an urban and rural RHS based on the characteristics of the region and the needs of the community. The findings show that implementing RHS in the study area can be a practical, economical, and efficient alternative for water resource management, since these projects are aimed at sustainability.

Suggested Citation

  • Blanca Itzany Rivera Vázquez & Edith Rosalba Salcedo Sánchez & Juan Manuel Esquivel Martínez & Miguel Ángel Gómez Albores & Felipe Gómez Noguez & Carina Gutiérrez Flores & Oscar Talavera Mendoza, 2023. "Use of Analytic Hierarchy Process Method to Identify Potential Rainwater Harvesting Sites: Design and Financial Strategies in Taxco de Alarcón, Southern Mexico," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8220-:d:1150053
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/10/8220/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/10/8220/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anna Musz-Pomorska & Marcin K. Widomski & Justyna Gołębiowska, 2020. "Financial Sustainability of Selected Rain Water Harvesting Systems for Single-Family House under Conditions of Eastern Poland," Sustainability, MDPI, vol. 12(12), pages 1-16, June.
    2. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    3. Sumar Farooq & Khalid Mahmood & Fiza Faizi, 2022. "Comparative Simulation of GIS-Based Rainwater Management Solutions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3049-3065, July.
    4. Mireya Ímaz Gispert & María Aurora Armienta Hernández & Enrique Lomnitz Climent & María Fernanda Torregrosa Flores, 2018. "Rainwater Harvesting as a Drinking Water Option for Mexico City," Sustainability, MDPI, vol. 10(11), pages 1-13, October.
    5. Garrick, D. & De Stefano, L. & Yu, Winston & Jorgensen, I. & O’Donnell, E. & Turley, L. & Aguilar-Barajas, I. & Dai, X. & de Souza Leao, R. & Punjabi, B. & Schreiner, B. & Svensson, J. & Wight, C., 2019. "Rural water for thirsty cities: a systematic review of water reallocation from rural to urban regions," Papers published in Journals (Open Access), International Water Management Institute, pages 1-14(4):043.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    2. Jochen Wulf, 2020. "Development of an AHP hierarchy for managing omnichannel capabilities: a design science research approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 39-68, April.
    3. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    4. D’Inverno, Giovanna & Carosi, Laura & Romano, Giulia & Guerrini, Andrea, 2018. "Water pollution in wastewater treatment plants: An efficiency analysis with undesirable output," European Journal of Operational Research, Elsevier, vol. 269(1), pages 24-34.
    5. Nermin Kişi, 2019. "A Strategic Approach to Sustainable Tourism Development Using the A’WOT Hybrid Method: A Case Study of Zonguldak, Turkey," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    6. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Odigie, O. & Munda, J.L., 2018. "A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria," Applied Energy, Elsevier, vol. 228(C), pages 1853-1869.
    7. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    8. Patricija Bajec & Danijela Tuljak-Suban, 2019. "An Integrated Analytic Hierarchy Process—Slack Based Measure-Data Envelopment Analysis Model for Evaluating the Efficiency of Logistics Service Providers Considering Undesirable Performance Criteria," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    9. Abareshi, Maryam & Zaferanieh, Mehdi, 2019. "A bi-level capacitated P-median facility location problem with the most likely allocation solution," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 1-20.
    10. Datu Buyung Agusdinata & Wenjuan Liu & Sinta Sulistyo & Philippe LeBillon & Je'anne Wegner, 2023. "Evaluating sustainability impacts of critical mineral extractions: Integration of life cycle sustainability assessment and SDGs frameworks," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 746-759, June.
    11. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    12. Sushil, 2019. "Efficient interpretive ranking process incorporating implicit and transitive dominance relationships," Annals of Operations Research, Springer, vol. 283(1), pages 1489-1516, December.
    13. Kokaraki, Nikoleta & Hopfe, Christina J. & Robinson, Elaine & Nikolaidou, Elli, 2019. "Testing the reliability of deterministic multi-criteria decision-making methods using building performance simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 991-1007.
    14. Hossein Yousefi & Saheb Ghanbari Motlagh & Mohammad Montazeri, 2022. "Multi-Criteria Decision-Making System for Wind Farm Site-Selection Using Geographic Information System (GIS): Case Study of Semnan Province, Iran," Sustainability, MDPI, vol. 14(13), pages 1-27, June.
    15. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    16. Kadir Kaan GÖNCÜ & Onur ÇETIN, 2022. "Evaluation Of Location Selection Criteria For Coordination Management Centers And Logistic Support Units In Disaster Areas With Ahp Method," Prizren Social Science Journal, SHIKS, vol. 6(2), pages 15-23, August.
    17. Kik, M.C. & Claassen, G.D.H. & Meuwissen, M.P.M. & Smit, A.B. & Saatkamp, H.W., 2021. "Actor analysis for sustainable soil management – A case study from the Netherlands," Land Use Policy, Elsevier, vol. 107(C).
    18. D. K. Choudhury, 2019. "Standard Critical Path and Selection of Most Economic and Quality Contractors for Construction of Thermal Power Plant: A Case Study in NTPC," Metamorphosis: A Journal of Management Research, , vol. 18(2), pages 103-118, December.
    19. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    20. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8220-:d:1150053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.