IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i9d10.1007_s11269-022-03185-2.html
   My bibliography  Save this article

Comparative Simulation of GIS-Based Rainwater Management Solutions

Author

Listed:
  • Sumar Farooq

    (University of the Punjab)

  • Khalid Mahmood

    (University of the Punjab
    University of the Punjab, 54590)

  • Fiza Faizi

    (University of the Punjab, 54590)

Abstract

Rain Water Harvesting (RWH) as a solution for sustainable rainwater management is the focus of this research. To locate the potential sites for RWH, multi-criteria analysis following analytical hierarchy process using land-use/landcover, slope, drainage density, and runoff depth has been performed. By introducing continuous soil moisture accounting procedure in the globally used SCS-CN method, discrepancies in computed runoff values have been assessed. To appraise the usefulness of revised Soil Moisture Accounting (SMA) -enhanced SCS-CN models, a number of modifications have been compared. The models’ performance has been evaluated using R2, Root Mean Square Error (RMSE), Nash Sutcliffe Efficiency (NSE), Percent BIAS (PBIAS) statistical indicators, and Rank Grading System (RGS) and the best has been selected to calculate the runoff depth for RWH potential zones. The resultant suitability map classifies Gurriala catchment into three suitability zones. 33.8% of the total area has been found as least suitable, comprised mainly of forest, residential land, and water bodies, while 46.8% and 19.4% of the area is recognized as moderately suitable and high suitable respectively. Selected suitable sites have been further classified into suitability zones for enhanced RWH structures and runoff volume contributed by each RWH structure has been computed. The total runoff potential of the area is 22.47 MCM that is enough to fulfill the water demands of suburban areas as a most inexpensive solution.

Suggested Citation

  • Sumar Farooq & Khalid Mahmood & Fiza Faizi, 2022. "Comparative Simulation of GIS-Based Rainwater Management Solutions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3049-3065, July.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:9:d:10.1007_s11269-022-03185-2
    DOI: 10.1007/s11269-022-03185-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03185-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03185-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chidozie Charles Nnaji & Clinton Aigbavboa, 2020. "A Scenario-Driven Assessment of the Economic Feasibility of Rainwater Harvesting Using Optimized Storage," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 393-408, January.
    2. Chidozie Charles Nnaji & Clinton Aigbavboa, 2020. "Correction to: A Scenario-Driven Assessment of the Economic Feasibility of Rainwater Harvesting Using Optimized Storage," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 885-886, January.
    3. Iman Saeedi & Mohsen Goodarzi, 2020. "Rainwater harvesting system: a sustainable method for landscape development in semiarid regions, the case of Malayer University campus in Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1579-1598, February.
    4. Ravindra Kumar Verma & Sangeeta Verma & Surendra Kumar Mishra & Ashish Pandey, 2021. "SCS-CN-Based Improved Models for Direct Surface Runoff Estimation from Large Rainfall Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2149-2175, May.
    5. Ali Nasiri Khiavi & Mehdi Vafakhah & Seyed Hamidreza Sadeghi, 2022. "Comparative prioritization of sub-watersheds based on Flood Generation potential using physical, hydrological and co-managerial approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1897-1917, April.
    6. P. Singh & S. Mishra & R. Berndtsson & M. Jain & R. Pandey, 2015. "Development of a Modified SMA Based MSCS-CN Model for Runoff Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 4111-4127, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sara Lopes Souto & Ricardo Prado Abreu Reis & Marcus André Siqueira Campos, 2023. "Impact of Installing Rainwater Harvesting System on Urban Water Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 583-600, January.
    2. Blanca Itzany Rivera Vázquez & Edith Rosalba Salcedo Sánchez & Juan Manuel Esquivel Martínez & Miguel Ángel Gómez Albores & Felipe Gómez Noguez & Carina Gutiérrez Flores & Oscar Talavera Mendoza, 2023. "Use of Analytic Hierarchy Process Method to Identify Potential Rainwater Harvesting Sites: Design and Financial Strategies in Taxco de Alarcón, Southern Mexico," Sustainability, MDPI, vol. 15(10), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monzur Alam Imteaz & Vassiliki Boulomytis, 2022. "Improvement of Rainwater Harvesting Analysis Through an Hourly Timestep Model in Comparison with a Daily Timestep Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2611-2622, June.
    2. Chen Shiguang & Zeng Haoxin & Sun Hongwei & Liu Song & Yang Yongmin, 2024. "How to determine the cistern volume of rainwater harvesting system: an analytical solution based on roof areas and water demands," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 20413-20438, August.
    3. Gabriela Cristina Ribeiro Pacheco & Conceição de Maria Albuquerque Alves, 2023. "The Influence of Deep Uncertainties in the Design and Performance of Residential Rainwater Harvesting Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1499-1517, March.
    4. Hui Xu & Junlong Gao & Xinchun Yu & Qianqian Qin & Shiqiang Du & Jiahong Wen, 2024. "Assessment of Rainstorm Waterlogging Disaster Risk in Rapidly Urbanizing Areas Based on Land Use Scenario Simulation: A Case Study of Jiangqiao Town in Shanghai, China," Land, MDPI, vol. 13(7), pages 1-18, July.
    5. Wenhai Shi & Mingbin Huang & Kate Gongadze & Lianhai Wu, 2017. "A Modified SCS-CN Method Incorporating Storm Duration and Antecedent Soil Moisture Estimation for Runoff Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1713-1727, March.
    6. Ting Zhang & Qian Gao & Huaming Xie & Qianjiao Wu & Yuwen Yu & Chukun Zhou & Zixian Chen & Hanqing Hu, 2022. "Response of Water Yield to Future Climate Change Based on InVEST and CMIP6—A Case Study of the Chaohu Lake Basin," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    7. Dariusz Młyński & Andrzej Wałęga, 2020. "Identification of the Relationship between Rainfall and the CN Parameter in Western Carpathian Mountain Catchments in Poland," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    8. Khurshid Jahan & Soni M. Pradhanang & Md Abul Ehsan Bhuiyan, 2021. "Surface Runoff Responses to Suburban Growth: An Integration of Remote Sensing, GIS, and Curve Number," Land, MDPI, vol. 10(5), pages 1-18, April.
    9. Sushindra Kumar Gupta & Jaivir Tyagi & Gunwant Sharma & A. S. Jethoo & P. K. Singh, 2019. "An Event-Based Sediment Yield and Runoff Modeling Using Soil Moisture Balance/Budgeting (SMB) Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3721-3741, September.
    10. Raziyeh Teimouri & Sadasivam Karuppannan & Alpana Sivam & Ning Gu & Komali Yenneti, 2023. "Exploring International Perspective on Factors Affecting Urban Socio-Ecological Sustainability by Green Space Planning," Sustainability, MDPI, vol. 15(19), pages 1-22, September.
    11. Esmatullah Sangin & S. K. Mishra & Pravin R. Patil, 2024. "Analogy Between SCS-CN and Muskingum Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 153-171, January.
    12. Akinchan Singhai & Sandipan Das & Ajaykumar K. Kadam & J. P. Shukla & D. S. Bundela & Mahesh Kalashetty, 2019. "GIS-based multi-criteria approach for identification of rainwater harvesting zones in upper Betwa sub-basin of Madhya Pradesh, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(2), pages 777-797, April.
    13. Ravindra Kumar Verma & Sangeeta Verma & Surendra Kumar Mishra & Ashish Pandey, 2021. "SCS-CN-Based Improved Models for Direct Surface Runoff Estimation from Large Rainfall Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2149-2175, May.
    14. E. M Andrade & J. R Araújo Neto & M. J. S Guerreiro & J. C. N Santos & H. A. Q Palácio, 2017. "Land Use Effect on the CN Model Parameters in a Tropical Dry Environment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(13), pages 4103-4116, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:9:d:10.1007_s11269-022-03185-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.