IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i5p452-d542099.html
   My bibliography  Save this article

Surface Runoff Responses to Suburban Growth: An Integration of Remote Sensing, GIS, and Curve Number

Author

Listed:
  • Khurshid Jahan

    (Department of Geosciences, University of Rhode Island, South Kingston, RI 02881, USA)

  • Soni M. Pradhanang

    (Department of Geosciences, University of Rhode Island, South Kingston, RI 02881, USA)

  • Md Abul Ehsan Bhuiyan

    (Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, MA 02115, USA)

Abstract

Suburban growth and its impacts on surface runoff were investigated using the soil conservation service curve number (SCS-CN) model, compared with the integrated advanced remote sensing and geographic information system (GIS)-based integrated approach, over South Kingston, Rhode Island, USA. This study analyzed and employed the supervised classification method on four Landsat images from 1994, 2004, 2014, and 2020 to detect land-use pattern changes through remote sensing applications. Results showed that 68.6% urban land expansion was reported from 1994 to 2020 in this suburban area. After land-use change detection, a GIS-based SCS-CN model was developed to examine suburban growth and surface runoff estimation. The developed model demonstrated the spatial distribution of runoff for each of the studied years. The results showed an increasing spatial pattern of 2% to 10% of runoff from 1994 to 2020. The correlation between runoff co-efficient and rainfall indicated the significant impact of suburban growth in surface runoff over the last 36 years in South Kingstown, RI, USA, showing a slight change of forest (8.2% area of the total area) and agricultural land (4.8% area of the total area). Suburban growth began after 2000, and within 16 years this land-use change started to show its substantial impact on surface runoff. We concluded that the proposed integrated approach could classify land-use and land cover information to understand suburban growth and its potential impact on the area.

Suggested Citation

  • Khurshid Jahan & Soni M. Pradhanang & Md Abul Ehsan Bhuiyan, 2021. "Surface Runoff Responses to Suburban Growth: An Integration of Remote Sensing, GIS, and Curve Number," Land, MDPI, vol. 10(5), pages 1-18, April.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:5:p:452-:d:542099
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/5/452/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/5/452/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Nagarajan & George Basil, 2014. "Remote sensing- and GIS-based runoff modeling with the effect of land-use changes (a case study of Cochin corporation)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 2023-2039, September.
    2. P. Singh & S. Mishra & R. Berndtsson & M. Jain & R. Pandey, 2015. "Development of a Modified SMA Based MSCS-CN Model for Runoff Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 4111-4127, September.
    3. Md Abul Ehsan Bhuiyan & Feifei Yang & Nishan Kumar Biswas & Saiful Haque Rahat & Tahneen Jahan Neelam, 2020. "Machine Learning-Based Error Modeling to Improve GPM IMERG Precipitation Product over the Brahmaputra River Basin," Forecasting, MDPI, vol. 2(3), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sabita Shrestha & Shenghui Cui & Lilai Xu & Lihong Wang & Bikram Manandhar & Shengping Ding, 2021. "Impact of Land Use Change Due to Urbanisation on Surface Runoff Using GIS-Based SCS–CN Method: A Case Study of Xiamen City, China," Land, MDPI, vol. 10(8), pages 1-18, August.
    2. Anna Porębska & Krzysztof Muszyński & Izabela Godyń & Kinga Racoń-Leja, 2023. "City and Water Risk: Accumulated Runoff Mapping Analysis as a Tool for Sustainable Land Use Planning," Land, MDPI, vol. 12(7), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sumar Farooq & Khalid Mahmood & Fiza Faizi, 2022. "Comparative Simulation of GIS-Based Rainwater Management Solutions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3049-3065, July.
    2. Akinchan Singhai & Sandipan Das & Ajaykumar K. Kadam & J. P. Shukla & D. S. Bundela & Mahesh Kalashetty, 2019. "GIS-based multi-criteria approach for identification of rainwater harvesting zones in upper Betwa sub-basin of Madhya Pradesh, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(2), pages 777-797, April.
    3. Sushindra Kumar Gupta & Jaivir Tyagi & Gunwant Sharma & A. S. Jethoo & P. K. Singh, 2019. "An Event-Based Sediment Yield and Runoff Modeling Using Soil Moisture Balance/Budgeting (SMB) Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3721-3741, September.
    4. Khurshid Jahan & Anwar Zahid & Md Abul Ehsan Bhuiyan & Iqbal Ali, 2022. "A Resilient and Nature-Based Drinking Water Supply Source for Saline and Arsenic Prone Coastal Aquifers of the Bengal Delta," Sustainability, MDPI, vol. 14(11), pages 1-22, May.
    5. Ravindra Kumar Verma & Sangeeta Verma & Surendra Kumar Mishra & Ashish Pandey, 2021. "SCS-CN-Based Improved Models for Direct Surface Runoff Estimation from Large Rainfall Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2149-2175, May.
    6. Wenhai Shi & Mingbin Huang & Kate Gongadze & Lianhai Wu, 2017. "A Modified SCS-CN Method Incorporating Storm Duration and Antecedent Soil Moisture Estimation for Runoff Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1713-1727, March.
    7. Vojtek Matej & Vojteková Jana, 2016. "GIS-based Approach to Estimate Surface Runoff in Small Catchments: A Case Study," Quaestiones Geographicae, Sciendo, vol. 35(3), pages 97-116, September.
    8. Dariusz Młyński & Andrzej Wałęga, 2020. "Identification of the Relationship between Rainfall and the CN Parameter in Western Carpathian Mountain Catchments in Poland," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    9. Fabio Recanatesi & Andrea Petroselli, 2020. "Land Cover Change and Flood Risk in a Peri-Urban Environment of the Metropolitan Area of Rome (Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(14), pages 4399-4413, November.
    10. Davide Marino & Margherita Palmieri & Angelo Marucci & Mariangela Soraci & Antonio Barone & Silvia Pili, 2023. "Linking Flood Risk Mitigation and Food Security: An Analysis of Land-Use Change in the Metropolitan Area of Rome," Land, MDPI, vol. 12(2), pages 1-23, January.
    11. Minxue He & Haksu Lee, 2021. "Advances in Hydrological Forecasting," Forecasting, MDPI, vol. 3(3), pages 1-3, July.
    12. E. M Andrade & J. R Araújo Neto & M. J. S Guerreiro & J. C. N Santos & H. A. Q Palácio, 2017. "Land Use Effect on the CN Model Parameters in a Tropical Dry Environment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(13), pages 4103-4116, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:5:p:452-:d:542099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.