IDEAS home Printed from https://ideas.repec.org/a/vrs/quageo/v35y2016i3p97-116n9.html
   My bibliography  Save this article

GIS-based Approach to Estimate Surface Runoff in Small Catchments: A Case Study

Author

Listed:
  • Vojtek Matej
  • Vojteková Jana

    (Department of Geography and Regional Development, Constantine the Philosopher University in Nitra, Slovakia)

Abstract

The issue of surface runoff assessment is one of the important and relevant topics of hydrological as well as geographical research. The aim of the paper is therefore to estimate and assess surface runoff on the example of Vyčoma catchment which is located in the Western Slovakia. For this purpose, SCS runoff curve number method, modeling in GIS and remote sensing were used. An important task was the creation of a digital elevation model (DEM), which enters the surface runoff modeling and affects its accuracy. Great attention was paid to the spatial interpretation of land use categories applying aerial imagery from 2013 and hydrological soil groups as well as calculation of maximum daily rainfall with N-year return periods as partial tasks in estimating surface runoff. From the methodological point of view, the importance of the paper can be seen in the use of a simple GIS-based approach to assess the surface runoff conditions in a small catchment.

Suggested Citation

  • Vojtek Matej & Vojteková Jana, 2016. "GIS-based Approach to Estimate Surface Runoff in Small Catchments: A Case Study," Quaestiones Geographicae, Sciendo, vol. 35(3), pages 97-116, September.
  • Handle: RePEc:vrs:quageo:v:35:y:2016:i:3:p:97-116:n:9
    DOI: 10.1515/quageo-2016-0030
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/quageo-2016-0030
    Download Restriction: no

    File URL: https://libkey.io/10.1515/quageo-2016-0030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. Nagarajan & George Basil, 2014. "Remote sensing- and GIS-based runoff modeling with the effect of land-use changes (a case study of Cochin corporation)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 2023-2039, September.
    2. J. Patil & A. Sarangi & O. Singh & A. Singh & T. Ahmad, 2008. "Development of a GIS Interface for Estimation of Runoff from Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(9), pages 1221-1239, September.
    3. Rajat Agarwal & P. Garg & R. Garg, 2013. "Remote Sensing and GIS Based Approach for Identification of Artificial Recharge Sites," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2671-2689, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. B. Yan & X. Su & Y. Chen, 2009. "Functional Structure and Data Management of Urban Water Supply Network Based on GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(13), pages 2633-2653, October.
    2. Muhammad Ajmal & Jae-Hyun Ahn & Tae-Woong Kim, 2016. "Excess Stormwater Quantification in Ungauged Watersheds Using an Event-Based Modified NRCS Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1433-1448, March.
    3. Shirisha Pulukuri & Venkata Reddy Keesara & Pratap Deva, 2018. "Flow Forecasting in a Watershed using Autoregressive Updating Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2701-2716, June.
    4. Bahram Choubin & Farzaneh Sajedi Hosseini & Omid Rahmati & Mansor Mehdizadeh Youshanloei, 2023. "A step toward considering the return period in flood spatial modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 431-460, January.
    5. R. Bhalla & Neil Pelkey & K. Devi Prasad, 2011. "Application of GIS for Evaluation and Design of Watershed Guidelines," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(1), pages 113-140, January.
    6. Khurshid Jahan & Soni M. Pradhanang & Md Abul Ehsan Bhuiyan, 2021. "Surface Runoff Responses to Suburban Growth: An Integration of Remote Sensing, GIS, and Curve Number," Land, MDPI, vol. 10(5), pages 1-18, April.
    7. Rejani Raghavan & Kondru Venkateswara Rao & Maheshwar Shivashankar Shirahatti & Duvvala Kalyana Srinivas & Kotha Sammi Reddy & Gajjala Ravindra Chary & Kodigal A. Gopinath & Mohammed Osman & Mathyam P, 2022. "Assessment of Spatial and Temporal Variations in Runoff Potential under Changing Climatic Scenarios in Northern Part of Karnataka in India Using Geospatial Techniques," Sustainability, MDPI, vol. 14(7), pages 1-21, March.
    8. Ismail Chenini & Abdallah Mammou & Moufida El May, 2010. "Groundwater Recharge Zone Mapping Using GIS-Based Multi-criteria Analysis: A Case Study in Central Tunisia (Maknassy Basin)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(5), pages 921-939, March.
    9. Fabio Recanatesi & Andrea Petroselli, 2020. "Land Cover Change and Flood Risk in a Peri-Urban Environment of the Metropolitan Area of Rome (Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(14), pages 4399-4413, November.
    10. Ajaykumar K. Kadam & Sanjay S. Kale & B. N. Umrikar & R. N. Sankhua & N. J. Pawar, 2022. "Assessing site suitability potential for soil and water conservation structures by using modified micro-watershed prioritization method: geomorphometric and geomatic approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4659-4683, April.
    11. Davide Marino & Margherita Palmieri & Angelo Marucci & Mariangela Soraci & Antonio Barone & Silvia Pili, 2023. "Linking Flood Risk Mitigation and Food Security: An Analysis of Land-Use Change in the Metropolitan Area of Rome," Land, MDPI, vol. 12(2), pages 1-23, January.
    12. Chang-Shian Chen & Frederick Chou & Boris Chen, 2010. "Spatial Information-Based Back-Propagation Neural Network Modeling for Outflow Estimation of Ungauged Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 4175-4197, November.
    13. Rajat Agarwal & P. Garg & R. Garg, 2013. "Remote Sensing and GIS Based Approach for Identification of Artificial Recharge Sites," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2671-2689, May.
    14. Muhammad Ajmal & Jae-Hyun Ahn & Tae-Woong Kim, 2016. "Excess Stormwater Quantification in Ungauged Watersheds Using an Event-Based Modified NRCS Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1433-1448, March.
    15. Ahmet Altin & Fatma Bakir & İsmail Özölçer, 2010. "The Evaluation of Kurtboğazı Dam (Ankara, Turkey) from Hydro-Geochemical and Environmental Aspects," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(4), pages 747-759, March.
    16. Shereif Mahmoud & A. Alazba & Amin T, 2014. "Identification of Potential Sites for Groundwater Recharge Using a GIS-Based Decision Support System in Jazan Region-Saudi Arabia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3319-3340, August.
    17. Anwar Hussain & Khalil Ur Rahman & Muhammad Shahid & Sajjad Haider & Quoc Bao Pham & Nguyen Thi Thuy Linh & Saad Shauket Sammen, 2022. "Investigating feasible sites for multi-purpose small dams in Swat District of Khyber Pakhtunkhwa Province, Pakistan: socioeconomic and environmental considerations," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 10852-10875, September.
    18. Chunlin Li & Miao Liu & Yuanman Hu & Tuo Shi & Min Zong & M. Todd Walter, 2018. "Assessing the Impact of Urbanization on Direct Runoff Using Improved Composite CN Method in a Large Urban Area," IJERPH, MDPI, vol. 15(4), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:quageo:v:35:y:2016:i:3:p:97-116:n:9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.