IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i8p4565-d791650.html
   My bibliography  Save this article

A Review of Organic Waste Treatment Using Black Soldier Fly ( Hermetia illucens )

Author

Listed:
  • Nur Fardilla Amrul

    (Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia)

  • Irfana Kabir Ahmad

    (Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
    Sustainable Urban Transport Research Centre (SUTRA), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia)

  • Noor Ezlin Ahmad Basri

    (Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
    Sustainable Urban Transport Research Centre (SUTRA), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia)

  • Fatihah Suja

    (Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia)

  • Nurul Ain Abdul Jalil

    (Department of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia)

  • Nur Asyiqin Azman

    (Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia)

Abstract

The increase in solid waste generation is caused primarily by the global population growth that resulted in urban sprawl, economic development, and consumerism. Poor waste management has adverse impacts on the environment and human health. The recent years have seen increasing interest in using black soldier fly (BSF), Hermetia illucens , as an organic waste converter. Black soldier fly larvae (BSFL) feed voraciously on various types of organic waste, including food wastes, agro-industrial by-products, and chicken and dairy manure, and reduce the initial weight of the organic waste by about 50% in a shorter period than conventional composting. The main components of the BSFL system are the larvero, where the larvae feed and grow, and the fly house, where the adults BSF live and reproduce. It is essential to have a rearing facility that maintains the healthy adult and larval BSF to provide a sufficient and continuous supply of offspring for organic waste treatment. The BSF organic waste processing facility consists of waste pre-processing, BSFL biowaste treatment, the separation of BSFL from the process residue, and larvae and residue refinement into marketable products. BSFL digest the nutrients in the wastes and convert them into beneficial proteins and fats used to produce animal feed, and BSFL residue can be used as an organic fertilizer. This review summarizes the BSFL treatment process to provide an in-depth understanding of the value of its by-products as animal feed and organic fertilizer.

Suggested Citation

  • Nur Fardilla Amrul & Irfana Kabir Ahmad & Noor Ezlin Ahmad Basri & Fatihah Suja & Nurul Ain Abdul Jalil & Nur Asyiqin Azman, 2022. "A Review of Organic Waste Treatment Using Black Soldier Fly ( Hermetia illucens )," Sustainability, MDPI, vol. 14(8), pages 1-15, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4565-:d:791650
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/8/4565/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/8/4565/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thanos Ioannou & Katerina Bazigou & Afroditi Katsigianni & Michalis Fotiadis & Christina Chroni & Thrassyvoulos Manios & Ioannis Daliakopoulos & Christos Tsompanidis & Eleni Michalodimitraki & Katia L, 2022. "The “A2UFood Training Kit”: Participatory Workshops to Minimize Food Loss and Waste," Sustainability, MDPI, vol. 14(4), pages 1-24, February.
    2. Komakech, A.J. & Sundberg, C. & Jönsson, H. & Vinnerås, B., 2015. "Life cycle assessment of biodegradable waste treatment systems for sub-Saharan African cities," Resources, Conservation & Recycling, Elsevier, vol. 99(C), pages 100-110.
    3. Sawangkeaw, Ruengwit & Ngamprasertsith, Somkiat, 2013. "A review of lipid-based biomasses as feedstocks for biofuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 97-108.
    4. Mohamed E. Abd El-Hack & Manal E. Shafi & Wed Y. Alghamdi & Sameh A. Abdelnour & Abdelrazeq M. Shehata & Ahmed E. Noreldin & Elwy A. Ashour & Ayman A. Swelum & Ahmed A. Al-Sagan & Mazen Alkhateeb & Ay, 2020. "Black Soldier Fly ( Hermetia illucens ) Meal as a Promising Feed Ingredient for Poultry: A Comprehensive Review," Agriculture, MDPI, vol. 10(8), pages 1-31, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tuti Suryati & Euis Julaeha & Kindi Farabi & Hanies Ambarsari & Ace Tatang Hidayat, 2023. "Lauric Acid from the Black Soldier Fly ( Hermetia illucens ) and Its Potential Applications," Sustainability, MDPI, vol. 15(13), pages 1-28, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hermida, Lilis & Abdullah, Ahmad Zuhairi & Mohamed, Abdul Rahman, 2015. "Deoxygenation of fatty acid to produce diesel-like hydrocarbons: A review of process conditions, reaction kinetics and mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1223-1233.
    2. Esther Landells & Anjum Naweed & David H. Pearson & Gamithri G. Karunasena & Samuel Oakden, 2022. "Out of Sight, Out of Mind: Using Post-Kerbside Organics Treatment Systems to Engage Australian Communities with Pro-Environmental Household Food Waste Behaviours," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
    3. Marta Wiśniewska & Andrzej Kulig & Krystyna Lelicińska-Serafin, 2021. "Odour Nuisance at Municipal Waste Biogas Plants and the Effect of Feedstock Modification on the Circular Economy—A Review," Energies, MDPI, vol. 14(20), pages 1-22, October.
    4. Dong, Tao & Knoshaug, Eric P. & Pienkos, Philip T. & Laurens, Lieve M.L., 2016. "Lipid recovery from wet oleaginous microbial biomass for biofuel production: A critical review," Applied Energy, Elsevier, vol. 177(C), pages 879-895.
    5. Go, Alchris Woo & Sutanto, Sylviana & Ong, Lu Ki & Tran-Nguyen, Phuong Lan & Ismadji, Suryadi & Ju, Yi-Hsu, 2016. "Developments in in-situ (trans) esterification for biodiesel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 284-305.
    6. Patel, Alok & Arora, Neha & Mehtani, Juhi & Pruthi, Vikas & Pruthi, Parul A., 2017. "Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 604-616.
    7. Sun, Zhe & Zhou, Zhi, 2019. "Nature-inspired virus-assisted algal cell disruption for cost-effective biofuel production," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    8. Li, Zhixia & Huang, Zhentao & Ding, Shilei & Li, Fuwei & Wang, Zhaohe & Lin, Hongfei & Chen, Congjin, 2018. "Catalytic conversion of waste cooking oil to fuel oil: Catalyst design and effect of solvent," Energy, Elsevier, vol. 157(C), pages 270-277.
    9. Akhlaghi, Shahin & Gedde, Ulf W. & Hedenqvist, Mikael S. & Braña, Maria T. Conde & Bellander, Martin, 2015. "Deterioration of automotive rubbers in liquid biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1238-1248.
    10. Pattanaik, Bhabani Prasanna & Misra, Rahul Dev, 2017. "Effect of reaction pathway and operating parameters on the deoxygenation of vegetable oils to produce diesel range hydrocarbon fuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 545-557.
    11. Christopher Shaw & Klaus Knopf & Werner Kloas, 2022. "Fish Feeds in Aquaponics and Beyond: A Novel Concept to Evaluate Protein Sources in Diets for Circular Multitrophic Food Production Systems," Sustainability, MDPI, vol. 14(7), pages 1-30, March.
    12. Michael Friedrich Tröster & Markus Heinz & Leonhard Durst, 2023. "Determining the Value of Novel Feedstuffs in Imperfect Markets, Taking Lupinus albus as an Example," Agriculture, MDPI, vol. 13(4), pages 1-15, April.
    13. Patel, Alok & Arora, Neha & Sartaj, Km & Pruthi, Vikas & Pruthi, Parul A., 2016. "Sustainable biodiesel production from oleaginous yeasts utilizing hydrolysates of various non-edible lignocellulosic biomasses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 836-855.
    14. Banković-Ilić, Ivana B. & Stojković, Ivan J. & Stamenković, Olivera S. & Veljkovic, Vlada B. & Hung, Yung-Tse, 2014. "Waste animal fats as feedstocks for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 238-254.
    15. Qurat Ul Ain Sajid & Muhammad Umair Asghar & Haneef Tariq & Martyna Wilk & Arkadiusz Płatek, 2023. "Insect Meal as an Alternative to Protein Concentrates in Poultry Nutrition with Future Perspectives (An Updated Review)," Agriculture, MDPI, vol. 13(6), pages 1-17, June.
    16. Feng, Weiliang & Tie, Xinlong & Duan, Xiaoling & Yan, Su & Fang, Si & Sun, Peiyong & Gan, Lin & Wang, Tielin, 2023. "Covalent immobilization of phosphotungstic acid and amino acid on metal-organic frameworks with different structures: Acid-base bifunctional heterogeneous catalyst for the production of biodiesel from," Renewable Energy, Elsevier, vol. 210(C), pages 26-39.
    17. Christopher Shaw & Klaus Knopf & Laura Klatt & Gabina Marin Arellano & Werner Kloas, 2023. "Closing Nutrient Cycles through the Use of System-Internal Resource Streams: Implications for Circular Multitrophic Food Production Systems and Aquaponic Feed Development," Sustainability, MDPI, vol. 15(9), pages 1-30, April.
    18. Sitepu, Eko K. & Heimann, Kirsten & Raston, Colin L. & Zhang, Wei, 2020. "Critical evaluation of process parameters for direct biodiesel production from diverse feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    19. Lam, Su Shiung & Wan Mahari, Wan Adibah & Cheng, Chin Kui & Omar, Rozita & Chong, Cheng Tung & Chase, Howard A., 2016. "Recovery of diesel-like fuel from waste palm oil by pyrolysis using a microwave heated bed of activated carbon," Energy, Elsevier, vol. 115(P1), pages 791-799.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4565-:d:791650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.