IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i7p4064-d782556.html
   My bibliography  Save this article

Fish Feeds in Aquaponics and Beyond: A Novel Concept to Evaluate Protein Sources in Diets for Circular Multitrophic Food Production Systems

Author

Listed:
  • Christopher Shaw

    (Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
    Thaer Institute of Agricultural and Horticultural Sciences, Faculty of Life Sciences, Humboldt University Berlin, 10115 Berlin, Germany)

  • Klaus Knopf

    (Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
    Thaer Institute of Agricultural and Horticultural Sciences, Faculty of Life Sciences, Humboldt University Berlin, 10115 Berlin, Germany)

  • Werner Kloas

    (Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
    Thaer Institute of Agricultural and Horticultural Sciences, Faculty of Life Sciences, Humboldt University Berlin, 10115 Berlin, Germany
    Institute of Biology, Faculty of Life Sciences, Humboldt University Berlin, 10117 Berlin, Germany)

Abstract

With the general objective of optimizing internal nutrient recycling, circular multitrophic food production systems, e.g., combining fish, plant, and insect larvae production, rely on the quality and composition of sustainable nutritional inputs. Therefore, differences in dissolved and solid nutrient excretion patterns produced by Nile tilapia ( Oreochromis niloticus ) reared in recirculating aquaculture systems (RAS) with 5% daily water exchange and fed black soldier fly meal (BSFM), poultry by-product meal (PM), poultry blood meal (PBM) and fish meal (FM) as single protein sources were investigated to evaluate the potential for creating specific fish meal-free diets. Fish fed the FM and PM diet showed the significantly best ( p < 0.05) and among each other similar ( p > 0.05) growth performance (specific growth rate (SGR): 2.12 ± 0.04/2.05 ± 0.11; feed conversion ratio (FCR): 0.86 ± 0.03/0.92 ± 0.01), whereas the PBM diet caused significantly reduced performance (SGR: 1.30 ± 0.02; FCR: 1.79 ± 0.05) in comparison to the FM/PM diet as well as the BSF diet (SGR: 1.76 ± 0.07; FCR: 1.11 ± 0.05). The FM and PM diet resulted in a faster increase and significantly higher dissolved nitrogen and phosphorus levels, while the BSF diet caused faster accumulation and significantly elevated levels of dissolved potassium, magnesium, and copper. The PBM diet resulted in the feces with the significantly highest nutrient density (gross energy, crude protein, and amino acids) but overall much lower dissolved nutrient levels in the water. Results are discussed with regard to implications for developing circular multitrophic food production systems.

Suggested Citation

  • Christopher Shaw & Klaus Knopf & Werner Kloas, 2022. "Fish Feeds in Aquaponics and Beyond: A Novel Concept to Evaluate Protein Sources in Diets for Circular Multitrophic Food Production Systems," Sustainability, MDPI, vol. 14(7), pages 1-30, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4064-:d:782556
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/7/4064/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/7/4064/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rosamond L. Naylor & Rebecca J. Goldburg & Jurgenne H. Primavera & Nils Kautsky & Malcolm C. M. Beveridge & Jason Clay & Carl Folke & Jane Lubchenco & Harold Mooney & Max Troell, 2000. "Effect of aquaculture on world fish supplies," Nature, Nature, vol. 405(6790), pages 1017-1024, June.
    2. Suhl, Johanna & Dannehl, Dennis & Kloas, Werner & Baganz, Daniela & Jobs, Sebastian & Scheibe, Günther & Schmidt, Uwe, 2016. "Advanced aquaponics: Evaluation of intensive tomato production in aquaponics vs. conventional hydroponics," Agricultural Water Management, Elsevier, vol. 178(C), pages 335-344.
    3. Sebastian Marcus Strauch & Lisa Carolina Wenzel & Adrian Bischoff & Olaf Dellwig & Jan Klein & Andrea Schüch & Berit Wasenitz & Harry Wilhelm Palm, 2018. "Commercial African Catfish ( Clarias gariepinus ) Recirculating Aquaculture Systems: Assessment of Element and Energy Pathways with Special Focus on the Phosphorus Cycle," Sustainability, MDPI, vol. 10(6), pages 1-29, May.
    4. Mohamed E. Abd El-Hack & Manal E. Shafi & Wed Y. Alghamdi & Sameh A. Abdelnour & Abdelrazeq M. Shehata & Ahmed E. Noreldin & Elwy A. Ashour & Ayman A. Swelum & Ahmed A. Al-Sagan & Mazen Alkhateeb & Ay, 2020. "Black Soldier Fly ( Hermetia illucens ) Meal as a Promising Feed Ingredient for Poultry: A Comprehensive Review," Agriculture, MDPI, vol. 10(8), pages 1-31, August.
    5. Rosamond L. Naylor & Ronald W. Hardy & Alejandro H. Buschmann & Simon R. Bush & Ling Cao & Dane H. Klinger & David C. Little & Jane Lubchenco & Sandra E. Shumway & Max Troell, 2021. "A 20-year retrospective review of global aquaculture," Nature, Nature, vol. 591(7851), pages 551-563, March.
    6. Ariel E. Turcios & Jutta Papenbrock, 2014. "Sustainable Treatment of Aquaculture Effluents—What Can We Learn from the Past for the Future?," Sustainability, MDPI, vol. 6(2), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher Shaw & Klaus Knopf & Werner Kloas, 2022. "Toward Feeds for Circular Multitrophic Food Production Systems: Holistically Evaluating Growth Performance and Nutrient Excretion of African Catfish Fed Fish Meal-Free Diets in Comparison to Nile Tila," Sustainability, MDPI, vol. 14(21), pages 1-31, November.
    2. Christopher Shaw & Klaus Knopf & Laura Klatt & Gabina Marin Arellano & Werner Kloas, 2023. "Closing Nutrient Cycles through the Use of System-Internal Resource Streams: Implications for Circular Multitrophic Food Production Systems and Aquaponic Feed Development," Sustainability, MDPI, vol. 15(9), pages 1-30, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher Shaw & Klaus Knopf & Werner Kloas, 2022. "Toward Feeds for Circular Multitrophic Food Production Systems: Holistically Evaluating Growth Performance and Nutrient Excretion of African Catfish Fed Fish Meal-Free Diets in Comparison to Nile Tila," Sustainability, MDPI, vol. 14(21), pages 1-31, November.
    2. Christopher Shaw & Klaus Knopf & Laura Klatt & Gabina Marin Arellano & Werner Kloas, 2023. "Closing Nutrient Cycles through the Use of System-Internal Resource Streams: Implications for Circular Multitrophic Food Production Systems and Aquaponic Feed Development," Sustainability, MDPI, vol. 15(9), pages 1-30, April.
    3. József Popp & László Váradi & Emese Békefi & András Péteri & Gergő Gyalog & Zoltán Lakner & Judit Oláh, 2018. "Evolution of Integrated Open Aquaculture Systems in Hungary: Results from a Case Study," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    4. Abdallah Tageldein Mansour & Mohamed Ashour & Ahmed E. Alprol & Ahmed Saud Alsaqufi, 2022. "Aquatic Plants and Aquatic Animals in the Context of Sustainability: Cultivation Techniques, Integration, and Blue Revolution," Sustainability, MDPI, vol. 14(6), pages 1-28, March.
    5. Ingunn Y. Gudbrandsdottir & Nína M. Saviolidis & Gudrun Olafsdottir & Gudmundur V. Oddsson & Hlynur Stefansson & Sigurdur G. Bogason, 2021. "Transition Pathways for the Farmed Salmon Value Chain: Industry Perspectives and Sustainability Implications," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    6. Delaide, Boris & Teerlinck, Stefan & Decombel, An & Bleyaert, Peter, 2019. "Effect of wastewater from a pikeperch (Sander lucioperca L.) recirculated aquaculture system on hydroponic tomato production and quality," Agricultural Water Management, Elsevier, vol. 226(C).
    7. Fatima Yahya & Antoine El Samrani & Mohamad Khalil & Alaa El-Din Abdin & Rasha El-Kholy & Mohamed Embaby & Mohab Negm & Dirk De Ketelaere & Anna Spiteri & Eleanna Pana & Vasileios Takavakoglou, 2023. "Decentralized Wetland-Aquaponics Addressing Environmental Degradation and Food Security Challenges in Disadvantaged Rural Areas: A Nature-Based Solution Driven by Mediterranean Living Labs," Sustainability, MDPI, vol. 15(20), pages 1-16, October.
    8. Zeke Marshall & Paul E. Brockway, 2020. "A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-27, June.
    9. Ariel E. Turcios & Jutta Papenbrock, 2014. "Sustainable Treatment of Aquaculture Effluents—What Can We Learn from the Past for the Future?," Sustainability, MDPI, vol. 6(2), pages 1-21, February.
    10. Juszczyk, Juliusz, 2015. "Światowy rynek łososia hodowlanego – stan i perspektywy," Problems of World Agriculture / Problemy Rolnictwa Światowego, Warsaw University of Life Sciences, vol. 15(30), pages 1-12, September.
    11. repec:mse:cesdoc:13002r is not listed on IDEAS
    12. Asche, Frank & Oglend, Atle, 2016. "The relationship between input-factor and output prices in commodity industries: The case of Norwegian salmon aquaculture," Journal of Commodity Markets, Elsevier, vol. 1(1), pages 35-47.
    13. Zoe G Nichols & Scott Rikard & Sayyed Mohammad Hadi Alavi & William C Walton & Ian A E Butts, 2021. "Regulation of sperm motility in Eastern oyster (Crassostrea virginica) spawning naturally in seawater with low salinity," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-24, March.
    14. Lipper, Leslie & Cavatassi, Romina & Symons, Ricci & Gordes, Alashiya & Page, Oliver, 2022. "IFAD Research Series 85: Financing climate adaptation and resilient agricultural livelihoods," IFAD Research Series 322020, International Fund for Agricultural Development (IFAD).
    15. Nesar Ahmed & Shirley Thompson & Giovanni M. Turchini, 2020. "Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1253-1267, December.
    16. Hughes, Conchúr & King, Jonathan W., 2023. "Habitat suitability modelling for an integrated multi-trophic aquaculture (IMTA) system along Europe's Atlantic coast," Ecological Modelling, Elsevier, vol. 484(C).
    17. Yi-Ju Wang & Teng Yang & Hye-Ji Kim, 2023. "pH Dynamics in Aquaponic Systems: Implications for Plant and Fish Crop Productivity and Yield," Sustainability, MDPI, vol. 15(9), pages 1-20, April.
    18. Katherine Elizabeth Drury & Felicity Victoria Crotty, 2022. "Developing the Use of Wool Rope within Aquaculture—A Systematic Review," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    19. Thaler, S. & Zessner, M. & Weigl, M. & Rechberger, H. & Schilling, K. & Kroiss, H., 2015. "Possible implications of dietary changes on nutrient fluxes, environment and land use in Austria," Agricultural Systems, Elsevier, vol. 136(C), pages 14-29.
    20. Prein, M., 2002. "Integration of aquaculture into crop-animal systems in Asia," Agricultural Systems, Elsevier, vol. 71(1-2), pages 127-146.
    21. Walsh, Michael J. & Gerber Van Doren, Léda & Shete, Nilam & Prakash, Akshay & Salim, Usama, 2018. "Financial tradeoffs of energy and food uses of algal biomass under stochastic conditions," Applied Energy, Elsevier, vol. 210(C), pages 591-603.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4064-:d:782556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.