IDEAS home Printed from https://ideas.repec.org/a/spr/ssefpa/v14y2022i3d10.1007_s12571-021-01246-9.html
   My bibliography  Save this article

The contribution of fisheries and aquaculture to the global protein supply

Author

Listed:
  • Claude E. Boyd

    (Auburn University)

  • Aaron A. McNevin

    (World Wildlife Fund)

  • Robert P. Davis

    (Auburn University)

Abstract

The contribution of aquatic animal protein to the global, animal-source protein supply and the relative importance of aquaculture to capture fisheries in supplying this protein is relevant in assessments and decisions related to the future of aquatic food production and its security. Meat of terrestrial animals, milk, and eggs resulted in 76,966 Kt crude protein compared with 13,950 Kt or 15.3% from aquatic animals in 2018.While aquaculture produced a greater tonnage of aquatic animals, capture fisheries resulted in 7,135 Kt crude protein while aquaculture yielded 6,815 Kt. Capture fisheries production has not increased in the past two decades, and aquaculture production must increase to assure the growing demand for fisheries products by a larger and more affluent population. We estimated based on status quo consumption, that aquaculture production would need to increase from 82,087 Kt in 2018 to 129,000 Kt by 2050 to meet the demand of the greater population. About two-thirds of finfish and crustacean production by aquaculture is feed-based, and feeds for these species include fishmeal and fish oil as ingredients. Aquaculture feeds require a major portion of the global supply of fishmeal and fish oil. An estimated 71.0% of fishmeal and 73.9% of fish oil are made from the catch with the rest coming from aquatic animal processing waste. The catch of small, pelagic fish from the ocean is not predicted to increase in the future. Aquaculture should reduce its fishmeal and oil use to lessen its dependency on small wild fish important to the integrity of marine food webs and food security for the poor in many coastal areas. Fishmeal and fish oil shortages for use in aquaculture feed will result in a limit on production in the future if goals to lessen their use in feeds are not met.

Suggested Citation

  • Claude E. Boyd & Aaron A. McNevin & Robert P. Davis, 2022. "The contribution of fisheries and aquaculture to the global protein supply," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(3), pages 805-827, June.
  • Handle: RePEc:spr:ssefpa:v:14:y:2022:i:3:d:10.1007_s12571-021-01246-9
    DOI: 10.1007/s12571-021-01246-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12571-021-01246-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12571-021-01246-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Małgorzata Karwowska & Sylwia Łaba & Krystian Szczepański, 2021. "Food Loss and Waste in Meat Sector—Why the Consumption Stage Generates the Most Losses?," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
    2. Christopher Costello & Ling Cao & Stefan Gelcich & Miguel Á. Cisneros-Mata & Christopher M. Free & Halley E. Froehlich & Christopher D. Golden & Gakushi Ishimura & Jason Maier & Ilan Macadam-Somer & T, 2020. "The future of food from the sea," Nature, Nature, vol. 588(7836), pages 95-100, December.
    3. Helena Kahiluoto, 2020. "Food systems for resilient futures," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(4), pages 853-857, August.
    4. Sena S. De Silva, 2016. "Culture based fisheries in Asia are a strategy to augment food security," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(3), pages 585-596, June.
    5. Sarah F. W. Taylor & Michael J. Roberts & Ben Milligan & Ronney Ncwadi, 2019. "Measurement and implications of marine food security in the Western Indian Ocean: an impending crisis?," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(6), pages 1395-1415, December.
    6. Jessica A. Gephart & Patrik J. G. Henriksson & Robert W. R. Parker & Alon Shepon & Kelvin D. Gorospe & Kristina Bergman & Gidon Eshel & Christopher D. Golden & Benjamin S. Halpern & Sara Hornborg & Ma, 2021. "Environmental performance of blue foods," Nature, Nature, vol. 597(7876), pages 360-365, September.
    7. Serge Savary & Sonia Akter & Conny Almekinders & Jody Harris & Lise Korsten & Reimund Rötter & Stephen Waddington & Derrill Watson, 2020. "Mapping disruption and resilience mechanisms in food systems," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(4), pages 695-717, August.
    8. Daniel Pauly & Dirk Zeller, 2016. "Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining," Nature Communications, Nature, vol. 7(1), pages 1-9, April.
    9. Sean Irwin & Mark S. Flaherty & Joachim Carolsfeld, 2021. "The contribution of small-scale, privately owned tropical aquaculture to food security and dietary diversity in Bolivia," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(1), pages 199-218, February.
    10. Dirk J. Steenbergen & Hampus Eriksson & Kimberley Hunnam & David J. Mills & Natasha Stacey, 2019. "Following the fish inland: understanding fish distribution networks for rural development and nutrition security," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(6), pages 1417-1432, December.
    11. Rosamond L. Naylor & Ronald W. Hardy & Alejandro H. Buschmann & Simon R. Bush & Ling Cao & Dane H. Klinger & David C. Little & Jane Lubchenco & Sandra E. Shumway & Max Troell, 2021. "A 20-year retrospective review of global aquaculture," Nature, Nature, vol. 591(7851), pages 551-563, March.
    12. A. B. M. Mahfuzul Haque & Madan Mohan Dey, 2017. "Impacts of community-based fish culture in seasonal floodplains on income, food security and employment in Bangladesh," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(1), pages 25-38, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heimann, Tobias & Delzeit, Ruth, 2024. "Land for fish: Quantifying the connection between the aquaculture sector and agricultural markets," Open Access Publications from Kiel Institute for the World Economy 281986, Kiel Institute for the World Economy (IfW Kiel).
    2. Heimann, Tobias & Delzeit, Ruth, 2024. "Land for fish: Quantifying the connection between the aquaculture sector and agricultural markets," Ecological Economics, Elsevier, vol. 217(C).
    3. Tra Van Tung & Nguyen Thi To Nga & Huu Tap Van & Tran Hai Vu & Ksawery Kuligowski & Adam Cenian & Nguyen Quang Tuan & Phuoc-Cuong Le & Quoc Ba Tran, 2023. "Energy Efficiency and Environmental Benefits of Waste Heat Recovery Technologies in Fishmeal Production Plants: A Case Study in Vietnam," Sustainability, MDPI, vol. 15(17), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shan Huang & Stewart M. Edie & Katie S. Collins & Nicholas M. A. Crouch & Kaustuv Roy & David Jablonski, 2023. "Diversity, distribution and intrinsic extinction vulnerability of exploited marine bivalves," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Naylor, Rosamond & Fang, Safari & Fanzo, Jessica, 2023. "A global view of aquaculture policy," Food Policy, Elsevier, vol. 116(C).
    3. Taryn M. Garlock & Frank Asche & James L. Anderson & Håkan Eggert & Thomas M. Anderson & Bin Che & Carlos A. Chávez & Jingjie Chu & Nnaemeka Chukwuone & Madan M. Dey & Kevin Fitzsimmons & Jimely Flore, 2024. "Environmental, economic, and social sustainability in aquaculture: the aquaculture performance indicators," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Heimann, Tobias & Delzeit, Ruth, 2024. "Land for fish: Quantifying the connection between the aquaculture sector and agricultural markets," Ecological Economics, Elsevier, vol. 217(C).
    5. Ling Cao & Benjamin S. Halpern & Max Troell & Rebecca Short & Cong Zeng & Ziyu Jiang & Yue Liu & Chengxuan Zou & Chunyu Liu & Shurong Liu & Xiangwei Liu & William W. L. Cheung & Richard S. Cottrell & , 2023. "Vulnerability of blue foods to human-induced environmental change," Nature Sustainability, Nature, vol. 6(10), pages 1186-1198, October.
    6. Bekhzod EGAMBERDIEV, 2021. "Household Impact Of The Covid-19 Pandemic From A Development Economics Perspective - A Review," Regional Science Inquiry, Hellenic Association of Regional Scientists, vol. 0(1), pages 15-30, June.
    7. Chunzhu Wei & Mo Zhang & Wei Chen & Yong Ge & Daoping Wang & Die Zhang & Desheng Xue & Qiuming Cheng & Changxiu Cheng & Wenguang Zhang, 2023. "After the pandemic: the global seafood trade market forecasts in 2030," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-13, December.
    8. Kangshun Zhao & Steven D. Gaines & Jorge García Molinos & Min Zhang & Jun Xu, 2024. "Effect of trade on global aquatic food consumption patterns," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Shingo Yoshida & Hironori Yagi, 2021. "Long-Term Development of Urban Agriculture: Resilience and Sustainability of Farmers Facing the Covid-19 Pandemic in Japan," Sustainability, MDPI, vol. 13(8), pages 1-23, April.
    10. Akpalu, Wisdom & Vondolia, Godwin K. & Adom, Phillip K. & Peprah, Dorcas Asaah, 2023. "Passive Participation in Illegal Fishing and the Welfare of Fishmongers in a Developing Country," EfD Discussion Paper 23-9, Environment for Development, University of Gothenburg.
    11. Zeke Marshall & Paul E. Brockway, 2020. "A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-27, June.
    12. Thomas Pircher & Conny J. M. Almekinders, 2021. "Making sense of farmers’ demand for seed of root, tuber and banana crops: a systematic review of methods," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(5), pages 1285-1301, October.
    13. Jingyi Liu & Feng Gui & Qian Zhou & Huiwen Cai & Kaida Xu & Sheng Zhao, 2023. "Carbon Footprint of a Large Yellow Croaker Mariculture Models Based on Life-Cycle Assessment," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    14. Christopher Shaw & Klaus Knopf & Werner Kloas, 2022. "Toward Feeds for Circular Multitrophic Food Production Systems: Holistically Evaluating Growth Performance and Nutrient Excretion of African Catfish Fed Fish Meal-Free Diets in Comparison to Nile Tila," Sustainability, MDPI, vol. 14(21), pages 1-31, November.
    15. Gregory D. Miller & Mitch Kanter & Laurence Rycken & Kevin B. Comerford & Nicholas M. Gardner & Katie A. Brown, 2021. "Food Systems Transformation for Child Health and Well-Being: The Essential Role of Dairy," IJERPH, MDPI, vol. 18(19), pages 1-14, October.
    16. Lipper, Leslie & Cavatassi, Romina & Symons, Ricci & Gordes, Alashiya & Page, Oliver, 2022. "IFAD Research Series 85: Financing climate adaptation and resilient agricultural livelihoods," IFAD Research Series 322020, International Fund for Agricultural Development (IFAD).
    17. Angeles Cámara & Rosa Santero-Sánchez, 2019. "Economic, Social, and Environmental Impact of a Sustainable Fisheries Model in Spain," Sustainability, MDPI, vol. 11(22), pages 1-16, November.
    18. Piotr Eljasik & Remigiusz Panicz & Małgorzata Sobczak & Jacek Sadowski, 2022. "Key Performance Indicators of Common Carp ( Cyprinus carpio L.) Wintering in a Pond and RAS under Different Feeding Schemes," Sustainability, MDPI, vol. 14(7), pages 1-24, March.
    19. Katherine Elizabeth Drury & Felicity Victoria Crotty, 2022. "Developing the Use of Wool Rope within Aquaculture—A Systematic Review," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    20. Koen Deconinck & Marion Jansen & Carla Barisone, 2023. "Fast and furious: the rise of environmental impact reporting in food systems," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(4), pages 1310-1337.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ssefpa:v:14:y:2022:i:3:d:10.1007_s12571-021-01246-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.