IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i17p12712-d1222691.html
   My bibliography  Save this article

Energy Efficiency and Environmental Benefits of Waste Heat Recovery Technologies in Fishmeal Production Plants: A Case Study in Vietnam

Author

Listed:
  • Tra Van Tung

    (Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam)

  • Nguyen Thi To Nga

    (Centre for Monitoring Natural Resources and Environment, Quang Tri 520000, Vietnam)

  • Huu Tap Van

    (Center for Advanced Technology Development, Thai Nguyen University, Tan Thinh Ward, Thai Nguyen 250000, Vietnam
    Faculty of Natural Resources and Environment, TNU—University of Sciences, Tan Thinh Ward, Thai Nguyen 250000, Vietnam)

  • Tran Hai Vu

    (Faculty of Natural Sciences, Quy Nhon University, Quy Nhon 820000, Vietnam)

  • Ksawery Kuligowski

    (The Institute of Fluid-Flow Machinery Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdansk, Poland)

  • Adam Cenian

    (The Institute of Fluid-Flow Machinery Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdansk, Poland)

  • Nguyen Quang Tuan

    (Department of Geography and Geology, University of Sciences, Hue University, Hue 530000, Vietnam)

  • Phuoc-Cuong Le

    (Faculty of Environment, The University of Danang—University of Science and Technology, 54 Nguyen Luong Bang St., Lien Chieu Dist., Danang 550000, Vietnam)

  • Quoc Ba Tran

    (Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam
    Faculty of Environmental and Chemical Engineering, Duy Tan University, Danang 550000, Vietnam)

Abstract

The fishmeal production industry is essential for providing protein for animal feed in the aquaculture sector. However, the industry faces challenges related to energy consumption and environmental sustainability. This study evaluates the energy efficiency and environmental benefits of waste heat recovery (WHR) technologies in a fishmeal production plant in Vietnam. Data were collected from the plant between 2016 and 2022, and a specific energy consumption (SEC) indicator and a comprehensive methodology were utilized. Implementing an economizer as a WHR technology resulted in a 55.5% decrease in SEC compared to the state before installation. The enhanced energy efficiency also translated to reduced energy consumption per output unit. Moreover, the economizer contributed to annual energy savings of 4537.57 GJ/year and cost savings of USD 26,474.49. Additionally, carbon dioxide (CO 2 ) emissions associated with producing one ton of fishmeal decreased by 58.37%. These findings highlight the potential for WHR technologies to improve energy efficiency and reduce the environmental footprint of fishmeal production. The study’s results provide valuable insights for practitioners and policymakers in promoting energy efficiency practices and reducing environmental impact in this and similar industries.

Suggested Citation

  • Tra Van Tung & Nguyen Thi To Nga & Huu Tap Van & Tran Hai Vu & Ksawery Kuligowski & Adam Cenian & Nguyen Quang Tuan & Phuoc-Cuong Le & Quoc Ba Tran, 2023. "Energy Efficiency and Environmental Benefits of Waste Heat Recovery Technologies in Fishmeal Production Plants: A Case Study in Vietnam," Sustainability, MDPI, vol. 15(17), pages 1-18, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:12712-:d:1222691
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/17/12712/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/17/12712/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Akvile Lawrence & Patrik Thollander & Mariana Andrei & Magnus Karlsson, 2019. "Specific Energy Consumption/Use (SEC) in Energy Management for Improving Energy Efficiency in Industry: Meaning, Usage and Differences," Energies, MDPI, vol. 12(2), pages 1-22, January.
    2. Cheng, Yuanyuan & Du, Kerui & Yao, Xin, 2023. "Stringent environmental regulation and inconsistent green innovation behavior: Evidence from air pollution prevention and control action plan in China," Energy Economics, Elsevier, vol. 120(C).
    3. Delpech, Bertrand & Milani, Massimo & Montorsi, Luca & Boscardin, Davide & Chauhan, Amisha & Almahmoud, Sulaiman & Axcell, Brian & Jouhara, Hussam, 2018. "Energy efficiency enhancement and waste heat recovery in industrial processes by means of the heat pipe technology: Case of the ceramic industry," Energy, Elsevier, vol. 158(C), pages 656-665.
    4. Claude E. Boyd & Aaron A. McNevin & Robert P. Davis, 2022. "The contribution of fisheries and aquaculture to the global protein supply," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(3), pages 805-827, June.
    5. Frank Asche & Håkan Eggert & Atle Oglend & Cathy A. Roheim & Martin D. Smith, 2022. "Aquaculture: Externalities and Policy Options," Review of Environmental Economics and Policy, University of Chicago Press, vol. 16(2), pages 282-305.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miguel Castro Oliveira & Muriel Iten & Pedro L. Cruz & Helena Monteiro, 2020. "Review on Energy Efficiency Progresses, Technologies and Strategies in the Ceramic Sector Focusing on Waste Heat Recovery," Energies, MDPI, vol. 13(22), pages 1-24, November.
    2. Naylor, Rosamond & Fang, Safari & Fanzo, Jessica, 2023. "A global view of aquaculture policy," Food Policy, Elsevier, vol. 116(C).
    3. Lisa Branchini & Maria Chiara Bignozzi & Benedetta Ferrari & Barbara Mazzanti & Saverio Ottaviano & Marcello Salvio & Claudia Toro & Fabrizio Martini & Andrea Canetti, 2021. "Cogeneration Supporting the Energy Transition in the Italian Ceramic Tile Industry," Sustainability, MDPI, vol. 13(7), pages 1-17, April.
    4. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Foley, Aoife M. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Rooney, David, 2022. "Decarbonizing the ceramics industry: A systematic and critical review of policy options, developments and sociotechnical systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    5. Rolandas Drejeris & Danguolė Oželienė, 2019. "Modeling Environmental Actions of Corporate Sustainable Activity: Evidence from Lithuania," Central European Business Review, Prague University of Economics and Business, vol. 2019(5), pages 69-93.
    6. Llera, Rocio & Vigil, Miguel & Díaz-Díaz, Sara & Martínez Huerta, Gemma Marta, 2022. "Prospective environmental and techno-economic assessment of steam production by means of heat pipes in the steel industry," Energy, Elsevier, vol. 239(PD).
    7. Delpech, Bertrand & Axcell, Brian & Jouhara, Hussam, 2019. "Experimental investigation of a radiative heat pipe for waste heat recovery in a ceramics kiln," Energy, Elsevier, vol. 170(C), pages 636-651.
    8. Ulvi Rzazade & Sergey Deryabin & Igor Temkin & Egor Kondratev & Alexander Ivannikov, 2023. "On the Issue of the Creation and Functioning of Energy Efficiency Management Systems for Technological Processes of Mining Enterprises," Energies, MDPI, vol. 16(13), pages 1-21, June.
    9. Khayyam, Hamid & Naebe, Minoo & Milani, Abbas S. & Fakhrhoseini, Seyed Mousa & Date, Abhijit & Shabani, Bahman & Atkiss, Steve & Ramakrishna, Seeram & Fox, Bronwyn & Jazar, Reza N., 2021. "Improving energy efficiency of carbon fiber manufacturing through waste heat recovery: A circular economy approach with machine learning," Energy, Elsevier, vol. 225(C).
    10. Minh Nguyen Dat & Kien Duong Trung & Hoang Truong Huy, 2021. "Energy Benchmarking Management for Beer and Beverage Industry in Vietnam," Management, Sciendo, vol. 25(2), pages 36-58, December.
    11. Azarpour, Abbas & Mohamadi-Baghmolaei, Mohamad & Hajizadeh, Abdollah & Zendehboudi, Sohrab, 2022. "Systematic energy and exergy assessment of a hydropurification process: Theoretical and practical insights," Energy, Elsevier, vol. 239(PC).
    12. Ruivo, Luís & Russo, Michael & Lourenço, Rúben & Pio, Daniel, 2021. "Energy management in the Portuguese ceramic industry: Analysis of real-world factories," Energy, Elsevier, vol. 237(C).
    13. Zare Banadkouki, Mohammad Reza, 2023. "Selection of strategies to improve energy efficiency in industry: A hybrid approach using entropy weight method and fuzzy TOPSIS," Energy, Elsevier, vol. 279(C).
    14. Estrada, Omar & Ortiz, Juan Carlos & Hernández, Alexander & López, Iván & Chejne, Farid & del Pilar Noriega, María, 2020. "Experimental study of energy performance of grooved feed and grooved plasticating single screw extrusion processes in terms of SEC, theoretical maximum energy efficiency and relative energy efficiency," Energy, Elsevier, vol. 194(C).
    15. Feng-Fan Liao & Wun-Hwa Chen, 2021. "Will the Management Structure of Energy Administrators Affect the Achievement of the Electrical Efficiency Mandatory Target for Taiwan Factories?," Energies, MDPI, vol. 14(7), pages 1-14, April.
    16. Hasan, A S M Monjurul & Tuhin, Rashedul Amin & Ullah, Mahfuz & Sakib, Taiyeb Hasan & Thollander, Patrik & Trianni, Andrea, 2021. "A comprehensive investigation of energy management practices within energy intensive industries in Bangladesh," Energy, Elsevier, vol. 232(C).
    17. Heimann, Tobias & Delzeit, Ruth, 2024. "Land for fish: Quantifying the connection between the aquaculture sector and agricultural markets," Open Access Publications from Kiel Institute for the World Economy 281986, Kiel Institute for the World Economy (IfW Kiel).
    18. Brough, Daniel & Mezquita, Ana & Ferrer, Salvador & Segarra, Carmen & Chauhan, Amisha & Almahmoud, Sulaiman & Khordehgah, Navid & Ahmad, Lujean & Middleton, David & Sewell, H. Isaac & Jouhara, Hussam, 2020. "An experimental study and computational validation of waste heat recovery from a lab scale ceramic kiln using a vertical multi-pass heat pipe heat exchanger," Energy, Elsevier, vol. 208(C).
    19. Raman Kumar & Sehijpal Singh & Ardamanbir Singh Sidhu & Catalin I. Pruncu, 2021. "Bibliometric Analysis of Specific Energy Consumption (SEC) in Machining Operations: A Sustainable Response," Sustainability, MDPI, vol. 13(10), pages 1-30, May.
    20. Beisheim, Benedikt & Krämer, Stefan & Engell, Sebastian, 2020. "Hierarchical aggregation of energy performance indicators in continuous production processes," Applied Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:12712-:d:1222691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.