IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v99y2015icp100-110.html
   My bibliography  Save this article

Life cycle assessment of biodegradable waste treatment systems for sub-Saharan African cities

Author

Listed:
  • Komakech, A.J.
  • Sundberg, C.
  • Jönsson, H.
  • Vinnerås, B.

Abstract

Most of the waste collected in sub-Saharan African cities is biodegradable but it is usually dumped in landfills, creating environmental and health challenges for residents. However, there are biodegradable waste treatment methods that could mitigate these challenges. This study analysed anaerobic digestion, composting, vermicomposting and fly larvae waste treatments using life cycle assessment (LCA). The impact categories assessed were energy use, global warming and eutrophication potential. The results showed that anaerobic digestion performed best in all impact categories assessed. However, management of the anaerobic digestion process is critical and methane losses must be kept very small, as otherwise they will cause global warming.

Suggested Citation

  • Komakech, A.J. & Sundberg, C. & Jönsson, H. & Vinnerås, B., 2015. "Life cycle assessment of biodegradable waste treatment systems for sub-Saharan African cities," Resources, Conservation & Recycling, Elsevier, vol. 99(C), pages 100-110.
  • Handle: RePEc:eee:recore:v:99:y:2015:i:c:p:100-110
    DOI: 10.1016/j.resconrec.2015.03.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344915000518
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2015.03.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nzila, Charles & Dewulf, Jo & Spanjers, Henri & Tuigong, David & Kiriamiti, Henry & van Langenhove, Herman, 2012. "Multi criteria sustainability assessment of biogas production in Kenya," Applied Energy, Elsevier, vol. 93(C), pages 496-506.
    2. Kathirvale, Sivapalan & Muhd Yunus, Muhd Noor & Sopian, Kamaruzzaman & Samsuddin, Abdul Halim, 2004. "Energy potential from municipal solid waste in Malaysia," Renewable Energy, Elsevier, vol. 29(4), pages 559-567.
    3. Guo, Z.C. & Fu, Z.X., 2010. "Current situation of energy consumption and measures taken for energy saving in the iron and steel industry in China," Energy, Elsevier, vol. 35(11), pages 4356-4360.
    4. Martínez-Blanco, Julia & Muñoz, Pere & Antón, Assumpció & Rieradevall, Joan, 2009. "Life cycle assessment of the use of compost from municipal organic waste for fertilization of tomato crops," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 340-351.
    5. Price, L & Sinton, J & Worrell, E & Phylipsen, D & Xiulian, H & Ji, L, 2002. "Energy use and carbon dioxide emissions from steel production in China," Energy, Elsevier, vol. 27(5), pages 429-446.
    6. Ketlogetswe, C. & Mothudi, T.H., 2005. "Botswana's environmental policy on recycling," Resources, Conservation & Recycling, Elsevier, vol. 44(4), pages 333-342.
    7. Weisser, Daniel, 2007. "A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies," Energy, Elsevier, vol. 32(9), pages 1543-1559.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nur Fardilla Amrul & Irfana Kabir Ahmad & Noor Ezlin Ahmad Basri & Fatihah Suja & Nurul Ain Abdul Jalil & Nur Asyiqin Azman, 2022. "A Review of Organic Waste Treatment Using Black Soldier Fly ( Hermetia illucens )," Sustainability, MDPI, vol. 14(8), pages 1-15, April.
    2. Marta Wiśniewska & Andrzej Kulig & Krystyna Lelicińska-Serafin, 2021. "Odour Nuisance at Municipal Waste Biogas Plants and the Effect of Feedstock Modification on the Circular Economy—A Review," Energies, MDPI, vol. 14(20), pages 1-22, October.
    3. Sandrine Costa & Mechthild Donner & Christian Duquennoi & Valentin Savary, 2024. "Biological valorization of urban solid biowaste: A study among circular bioeconomy start-ups in France," Post-Print hal-04528996, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Kaile & Yang, Shanlin, 2016. "Emission reduction of China׳s steel industry: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 319-327.
    2. Leonardo Leoni & Alessandra Cantini & Filippo De Carlo & Marcello Salvio & Chiara Martini & Claudia Toro & Fabrizio Martini, 2021. "Energy-Saving Technology Opportunities and Investments of the Italian Foundry Industry," Energies, MDPI, vol. 14(24), pages 1-29, December.
    3. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina & Wagner, Fabian & Cofala, Janusz, 2014. "Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry," Energy, Elsevier, vol. 78(C), pages 333-345.
    4. Yi, Ji Hyun & Ko, Woong & Park, Jong-Keun & Park, Hyeongon, 2018. "Impact of carbon emission constraint on design of small scale multi-energy system," Energy, Elsevier, vol. 161(C), pages 792-808.
    5. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    6. Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    7. Zhang, Ruirui & Wang, Guiling & Shen, Xiaoxu & Wang, Jinfeng & Tan, Xianfeng & Feng, Shoutao & Hong, Jinglan, 2020. "Is geothermal heating environmentally superior than coal fired heating in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    8. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    9. Guohua Feng & Chuan Wang & Apostolos Serletis, 2018. "Shadow prices of $$\hbox {CO}_{2}$$ CO 2 emissions at US electric utilities: a random-coefficient, random-directional-vector directional output distance function approach," Empirical Economics, Springer, vol. 54(1), pages 231-258, February.
    10. Fatoumata Jarjusey & Norshamliza Chamhuri, 2017. "Consumers' Awareness and Knowledge about Food Waste in Selangor,Malaysia," International Journal of Business and Economic Affairs (IJBEA), Sana N. Maswadeh, vol. 2(2), pages 91-97.
    11. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    12. Kumar, Indraneel & Tyner, Wallace E. & Sinha, Kumares C., 2016. "Input–output life cycle environmental assessment of greenhouse gas emissions from utility scale wind energy in the United States," Energy Policy, Elsevier, vol. 89(C), pages 294-301.
    13. Kim, Dongin & Han, Jeehoon, 2020. "Comprehensive analysis of two catalytic processes to produce formic acid from carbon dioxide," Applied Energy, Elsevier, vol. 264(C).
    14. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    15. Meng, Fankai & Chen, Lingen & Feng, Yuanli & Xiong, Bing, 2017. "Thermoelectric generator for industrial gas phase waste heat recovery," Energy, Elsevier, vol. 135(C), pages 83-90.
    16. Yu, Shiwei & Wei, Yi-Ming & Guo, Haixiang & Ding, Liping, 2014. "Carbon emission coefficient measurement of the coal-to-power energy chain in China," Applied Energy, Elsevier, vol. 114(C), pages 290-300.
    17. Wu, Xiao & Xi, Han & Qiu, Ruohan & Lee, Kwang Y., 2023. "Low carbon optimal planning of the steel mill gas utilization system," Applied Energy, Elsevier, vol. 343(C).
    18. Xuan, Yanni & Yue, Qiang, 2017. "Scenario analysis on resource and environmental benefits of imported steel scrap for China’s steel industry," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 186-198.
    19. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
    20. Marimuthu, C. & Kirubakaran, V., 2013. "Carbon pay back period for solar and wind energy project installed in India: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 80-90.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:99:y:2015:i:c:p:100-110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.