IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i7p3812-d778129.html
   My bibliography  Save this article

Methodology for Prioritizing Best Practices Applied to the Sustainable Last Mile—The Case of a Brazilian Parcel Delivery Service Company

Author

Listed:
  • Tássia Faria de Assis

    (Program of Transportation Engineering, Instituto Alberto Luiz Coimbra de Pós Graduação e Pesquisa em Engenharia (COPPE), Federal University of Rio de Janeiro (UFRJ), Technology Center, Building H–Room 117, Rio de Janeiro 999074, Brazil)

  • Victor Hugo Souza de Abreu

    (Program of Transportation Engineering, Instituto Alberto Luiz Coimbra de Pós Graduação e Pesquisa em Engenharia (COPPE), Federal University of Rio de Janeiro (UFRJ), Technology Center, Building H–Room 117, Rio de Janeiro 999074, Brazil)

  • Mariane Gonzalez da Costa

    (Program of Transportation Engineering, Instituto Alberto Luiz Coimbra de Pós Graduação e Pesquisa em Engenharia (COPPE), Federal University of Rio de Janeiro (UFRJ), Technology Center, Building H–Room 117, Rio de Janeiro 999074, Brazil)

  • Marcio de Almeida D’Agosto

    (Program of Transportation Engineering, Instituto Alberto Luiz Coimbra de Pós Graduação e Pesquisa em Engenharia (COPPE), Federal University of Rio de Janeiro (UFRJ), Technology Center, Building H–Room 117, Rio de Janeiro 999074, Brazil)

Abstract

The ever-increasing impacts of the last mile delivery sector on the environment and the quality of life of the urban population, such as increased congestion, demand best practices to be incorporated by companies to reduce impacts such as emission of air pollutants and Greenhouse Gases (GHG) and depletion of natural resources, among others. However, a myriad of strategies has been developed for this purpose but there is a lack of methodologies that allow the choice of the best ones for a specific case. Therefore, this study looks for those best practices to be employed through an innovative methodology that consists of SWOT analysis (Strengths, Weaknesses, Opportunities, and Threats), a map of strategies of the delivery service, and using the Sustainability Balanced Scorecard (SBSC) and the Analytic Hierarchy Process (AHP), with the differential of considering the peculiarities of each company. The results applied in a Brazilian last mile delivery service company show that best practices such as route optimization, implementation of new infrastructure and business models for urban deliveries, and use of information systems for fleet tracking and monitoring contribute significantly to improving performance indicators and achieving the sector’s goal to become more sustainable, and especially meeting the Sustainable Development Goals (SDGs) 8, 9, 11, and 17.

Suggested Citation

  • Tássia Faria de Assis & Victor Hugo Souza de Abreu & Mariane Gonzalez da Costa & Marcio de Almeida D’Agosto, 2022. "Methodology for Prioritizing Best Practices Applied to the Sustainable Last Mile—The Case of a Brazilian Parcel Delivery Service Company," Sustainability, MDPI, vol. 14(7), pages 1-24, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:3812-:d:778129
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/7/3812/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/7/3812/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marta Viu-Roig & Eduard J. Alvarez-Palau, 2020. "The Impact of E-Commerce-Related Last-Mile Logistics on Cities: A Systematic Literature Review," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
    2. Nils Boysen & Stefan Fedtke & Stefan Schwerdfeger, 2021. "Last-mile delivery concepts: a survey from an operational research perspective," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 1-58, March.
    3. João Leitão & Sónia de Brito & Serena Cubico, 2019. "Eco-Innovation Influencers: Unveiling the Role of Lean Management Principles Adoption," Sustainability, MDPI, vol. 11(8), pages 1-27, April.
    4. Louis Faugère & Chelsea White & Benoit Montreuil, 2020. "Mobile Access Hub Deployment for Urban Parcel Logistics," Sustainability, MDPI, vol. 12(17), pages 1-22, September.
    5. Justyna Lemke & Kinga Kijewska & Stanisław Iwan & Tomasz Dudek, 2021. "Six Sigma in Urban Logistics Management—A Case Study," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    6. Luce Brotcorne & Guido Perboli & Mariangela Rosano & Qu Wei, 2019. "A Managerial Analysis of Urban Parcel Delivery: A Lean Business Approach," Sustainability, MDPI, vol. 11(12), pages 1-23, June.
    7. Paraskevi Karanikola & Thomas Panagopoulos & Stilianos Tampakis & Georgios Tsantopoulos, 2018. "Cycling as a Smart and Green Mode of Transport in Small Touristic Cities," Sustainability, MDPI, vol. 10(1), pages 1-18, January.
    8. Melkonyan, Ani & Gruchmann, Tim & Lohmar, Fabian & Kamath, Vasanth & Spinler, Stefan, 2020. "Sustainability assessment of last-mile logistics and distribution strategies: The case of local food networks," International Journal of Production Economics, Elsevier, vol. 228(C).
    9. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198.
    10. Maria Julia Xavier Belem & Milton Vieira Junior & Giovanni Mummolo & Francesco Facchini, 2021. "An AHP-Based Procedure for Model Selection for Eco-Efficiency Assessment," Sustainability, MDPI, vol. 13(21), pages 1-21, November.
    11. Letnik, Tomislav & Marksel, Maršenka & Luppino, Giuseppe & Bardi, Andrea & Božičnik, Stane, 2018. "Review of policies and measures for sustainable and energy efficient urban transport," Energy, Elsevier, vol. 163(C), pages 245-257.
    12. Magali Jara & Dany Vyt & Olivier Mevel & Thierry Morvan & Nélida Morvan, 2018. "Measuring customers benefits of click and collect," Post-Print halshs-01806403, HAL.
    13. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935.
    14. Anuj Mittal & Caroline C. Krejci & Teri J. Craven, 2018. "Logistics Best Practices for Regional Food Systems: A Review," Sustainability, MDPI, vol. 10(1), pages 1-44, January.
    15. Karine Evrard Samuel & Parisa Dolati Neghabadi & Marie-Laure Espinouse, 2016. "City logistics: a review and research framework," Post-Print hal-02056253, HAL.
    16. Mehmann, Jens & Frehe, Volker & Teuteberg, Frank, 2015. "Crowd Logistics − A Literature Review and Maturity Model," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), Innovations and Strategies for Logistics and Supply Chains: Technologies, Business Models and Risk Management. Proceedings of the Hamburg Internationa, volume 20, pages 117-145, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    17. Schwerdfeger, Stefan & Boysen, Nils, 2020. "Optimizing the changing locations of mobile parcel lockers in last-mile distribution," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1077-1094.
    18. Jesus Gonzalez-Feliu, 2011. "Costs and benefits of logistics pooling for urban freight distribution: scenario simulation and assessment for strategic decision support," Post-Print halshs-00688967, HAL.
    19. Jessica Wehner, 2018. "Energy Efficiency in Logistics: An Interactive Approach to Capacity Utilisation," Sustainability, MDPI, vol. 10(6), pages 1-19, May.
    20. Huang, Yuhan & Ng, Elvin C.Y. & Zhou, John L. & Surawski, Nic C. & Chan, Edward F.C. & Hong, Guang, 2018. "Eco-driving technology for sustainable road transport: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 596-609.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vasco Silva & António Amaral & Tânia Fontes, 2023. "Sustainable Urban Last-Mile Logistics: A Systematic Literature Review," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    2. Anne-Maree Dowd & Michelle Rodriguez & Talia Jeanneret, 2015. "Social Science Insights for the BioCCS Industry," Energies, MDPI, vol. 8(5), pages 1-19, May.
    3. Fankhauser, Samuel & Jotzo, Frank, 2017. "Economic growth and development with low-carbon energy," LSE Research Online Documents on Economics 86850, London School of Economics and Political Science, LSE Library.
    4. Tilmann Rave, 2013. "Innovation Indicators on Global Climate Change – R&D Expenditure and Patents," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 66(15), pages 34-41, August.
    5. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    6. Lykke E. Andersen & Luis Carlos Jemio, 2016. "Decentralization and poverty reduction in Bolivia: Challenges and opportunities," Development Research Working Paper Series 01/2016, Institute for Advanced Development Studies.
    7. Chen, Han & Huang, Ye & Shen, Huizhong & Chen, Yilin & Ru, Muye & Chen, Yuanchen & Lin, Nan & Su, Shu & Zhuo, Shaojie & Zhong, Qirui & Wang, Xilong & Liu, Junfeng & Li, Bengang & Tao, Shu, 2016. "Modeling temporal variations in global residential energy consumption and pollutant emissions," Applied Energy, Elsevier, vol. 184(C), pages 820-829.
    8. Inglesi-Lotz, Roula, 2017. "Social rate of return to R&D on various energy technologies: Where should we invest more? A study of G7 countries," Energy Policy, Elsevier, vol. 101(C), pages 521-525.
    9. Tom Mikunda & Tom Kober & Heleen de Coninck & Morgan Bazilian & Hilke R�sler & Bob van der Zwaan, 2014. "Designing policy for deployment of CCS in industry," Climate Policy, Taylor & Francis Journals, vol. 14(5), pages 665-676, September.
    10. Li, Yating & Fei, Yinxin & Zhang, Xiao-Bing & Qin, Ping, 2019. "Household appliance ownership and income inequality: Evidence from micro data in China," China Economic Review, Elsevier, vol. 56(C), pages 1-1.
    11. Xiaolun Wang & Xinlin Yao, 2020. "Fueling Pro-Environmental Behaviors with Gamification Design: Identifying Key Elements in Ant Forest with the Kano Model," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    12. Florian Knobloch & Hector Pollitt & Unnada Chewpreecha & Vassilis Daioglou & Jean-Francois Mercure, 2017. "Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C," Papers 1710.11019, arXiv.org, revised May 2018.
    13. He, Gang & Victor, David G., 2017. "Experiences and lessons from China’s success in providing electricity for all," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 335-338.
    14. Jun Nakatani & Tamon Maruyama & Kosuke Fukuchi & Yuichi Moriguchi, 2015. "A Practical Approach to Screening Potential Environmental Hotspots of Different Impact Categories in Supply Chains," Sustainability, MDPI, vol. 7(9), pages 1-15, August.
    15. van der Zwaan, Bob & Kober, Tom & Calderon, Silvia & Clarke, Leon & Daenzer, Katie & Kitous, Alban & Labriet, Maryse & Lucena, André F.P. & Octaviano, Claudia & Di Sbroiavacca, Nicolas, 2016. "Energy technology roll-out for climate change mitigation: A multi-model study for Latin America," Energy Economics, Elsevier, vol. 56(C), pages 526-542.
    16. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
    17. Selosse, Sandrine & Ricci, Olivia & Maïzi, Nadia, 2013. "Fukushima's impact on the European power sector: The key role of CCS technologies," Energy Economics, Elsevier, vol. 39(C), pages 305-312.
    18. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    19. Mokri, Alaeddine & Aal Ali, Mona & Emziane, Mahieddine, 2013. "Solar energy in the United Arab Emirates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 340-375.
    20. Ondraczek, Janosch, 2014. "Are we there yet? Improving solar PV economics and power planning in developing countries: The case of Kenya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 604-615.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:3812-:d:778129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.