IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i8p4302-d534932.html
   My bibliography  Save this article

Six Sigma in Urban Logistics Management—A Case Study

Author

Listed:
  • Justyna Lemke

    (Faculty of Economics and Transport Engineering, Maritime University of Szczecin, ul. H. Pobożnego 11, 70-507 Szczecin, Poland)

  • Kinga Kijewska

    (Faculty of Economics and Transport Engineering, Maritime University of Szczecin, ul. H. Pobożnego 11, 70-507 Szczecin, Poland)

  • Stanisław Iwan

    (Faculty of Economics and Transport Engineering, Maritime University of Szczecin, ul. H. Pobożnego 11, 70-507 Szczecin, Poland)

  • Tomasz Dudek

    (Faculty of Economics and Transport Engineering, Maritime University of Szczecin, ul. H. Pobożnego 11, 70-507 Szczecin, Poland)

Abstract

A city as a system that constitutes one of the most important areas of human activities. The significant role to fulfill their expectations pay the goods transport and deliveries. These issues are the subject of urban logistics. In broad terms, urban logistics may be construed as a number of processes focused on freight flows, which are completed in cities, including deliveries, supply, goods transfer, services, etc. Due to the different urban logistics stakeholders’ expectations, these systems generate many challenges for managers, especially in the context of city users’ needs and their quality of life. Today, there is a lack of broadened approach and methodology to support them from the processes’ efficiency perspective. To fulfill this gap, the purpose of this paper is to apply the Six Sigma method as a support in last mile delivery management. Six Sigma method plays important role in production systems processes management. However, it could be useful in much wider perspective, including transport and logistics processes. The Authors emphasize that the Six Sigma method could be efficient approach in the last mile delivery processes’ analysis in the context of their efficiency. It helps positioning the customer satisfaction level and quantify the delivery processes defects, related to the undelivered goods. Following that it could improve significantly the last mile delivery processes efficiency. The concept is illustrated by a sample evaluation of one of the urban logistics processes: completion of deliveries. To this end, urban logistics processes were defined. In particular, the delivery completion process was mapped, and the process client was defined along with their expectations. The defects that occurred in the process were identified and analyzed. A DPMO (Defect per Million Opportunities) indicator was established for three randomly selected months. In addition, a root cause analysis of errors was performed. The sigma level for the studied process ranged from 2.61 to 2.89. The factor that had the greatest impact on the number of defects defined as failed deliveries was customer’s absence. The obtained results indicate that the delivery process should be examined in more detail.

Suggested Citation

  • Justyna Lemke & Kinga Kijewska & Stanisław Iwan & Tomasz Dudek, 2021. "Six Sigma in Urban Logistics Management—A Case Study," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4302-:d:534932
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/8/4302/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/8/4302/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francesco Russo & Antonio Comi, 2016. "Urban Freight Transport Planning towards Green Goals: Synthetic Environmental Evidence from Tested Results," Sustainability, MDPI, vol. 8(4), pages 1-18, April.
    2. Jiju Antony, 2012. "A SWOT analysis on Six Sigma: some perspectives from leading academics and practitioners," International Journal of Productivity and Performance Management, Emerald Group Publishing Limited, vol. 61(6), pages 691-698, July.
    3. John Olsson & Daniel Hellström & Henrik Pålsson, 2019. "Framework of Last Mile Logistics Research: A Systematic Review of the Literature," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    4. Maria Nicolai & Sofia Totolici, 2005. "Six Sigma - a New Approach of Quality," Economics and Applied Informatics, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, issue 1, pages 91-98, JUNE.
    5. Sönke Behrends & Maria Lindholm & Johan Woxenius, 2008. "The Impact of Urban Freight Transport: A Definition of Sustainability from an Actor's Perspective," Transportation Planning and Technology, Taylor & Francis Journals, vol. 31(6), pages 693-713, September.
    6. Leonardo N. Rosenberg & Noemie Balouka & Yale T. Herer & Eglantina Dani & Paco Gasparin & Kerstin Dobers & David Rüdiger & Pete Pättiniemi & Peter Portheine & Sonja van Uden, 2021. "Introducing the Shared Micro-Depot Network for Last-Mile Logistics," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    7. Lóránt Tavasszy & Maja Piecyk, 2018. "Sustainable Freight Transport," Sustainability, MDPI, vol. 10(10), pages 1-4, October.
    8. Aylin Çalışkan & Mustafa Kalkan & Yucel Ozturkoglu, 2017. "City logistics: problems and recovery proposals," International Journal of Logistics Systems and Management, Inderscience Enterprises Ltd, vol. 26(2), pages 145-162.
    9. Andrea Sujova & Lubica Simanova & Katarina Marcinekova, 2016. "Sustainable Process Performance by Application of Six Sigma Concepts: The Research Study of Two Industrial Cases," Sustainability, MDPI, vol. 8(3), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leonor Teixeira & Ana Luísa Ramos & Carolina Costa & Dulce Pedrosa & César Faria & Carina Pimentel, 2023. "SOLFI: An Integrated Platform for Sustainable Urban Last-Mile Logistics’ Operations—Study, Design and Development," Sustainability, MDPI, vol. 15(3), pages 1-23, February.
    2. Tássia Faria de Assis & Victor Hugo Souza de Abreu & Mariane Gonzalez da Costa & Marcio de Almeida D’Agosto, 2022. "Methodology for Prioritizing Best Practices Applied to the Sustainable Last Mile—The Case of a Brazilian Parcel Delivery Service Company," Sustainability, MDPI, vol. 14(7), pages 1-24, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leonor Teixeira & Ana Luísa Ramos & Carolina Costa & Dulce Pedrosa & César Faria & Carina Pimentel, 2023. "SOLFI: An Integrated Platform for Sustainable Urban Last-Mile Logistics’ Operations—Study, Design and Development," Sustainability, MDPI, vol. 15(3), pages 1-23, February.
    2. Sergio Maria Patella & Gianluca Grazieschi & Valerio Gatta & Edoardo Marcucci & Stefano Carrese, 2020. "The Adoption of Green Vehicles in Last Mile Logistics: A Systematic Review," Sustainability, MDPI, vol. 13(1), pages 1-29, December.
    3. Leise Kelli de Oliveira & Carla de Oliveira Leite Nascimento & Paulo Renato de Sousa & Paulo Tarso Vilela de Resende & Francisco Gildemir Ferreira da Silva, 2019. "Transport Service Provider Perception of Barriers and Urban Freight Policies in Brazil," Sustainability, MDPI, vol. 11(24), pages 1-17, December.
    4. Jacek Oskarbski & Daniel Kaszubowski, 2018. "Applying a Mesoscopic Transport Model to Analyse the Effects of Urban Freight Regulatory Measures on Transport Emissions—An Assessment," Sustainability, MDPI, vol. 10(7), pages 1-18, July.
    5. Fernando Fontes & Victor Andrade, 2022. "Bicycle Logistics as a Sustainability Strategy: Lessons from Brazil and Germany," Sustainability, MDPI, vol. 14(19), pages 1-29, October.
    6. Priscila Pereira Suzart Carvalho & Ricardo Araújo Kalid & Jorge Laureano Moya Rodríguez & Sandro Breval Santiago, 2019. "Interactions among stakeholders in the processes of city logistics: a systematic review of the literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 567-607, August.
    7. Katarzyna Dohn & Marzena Kramarz & Edyta Przybylska, 2022. "Interaction with City Logistics Stakeholders as a Factor of the Development of Polish Cities on the Way to Becoming Smart Cities," Energies, MDPI, vol. 15(11), pages 1-24, June.
    8. Chin-Shan Lu & Kuo-Chung Shang & Chi-Chang Lin, 2016. "Examining sustainability performance at ports: port managers’ perspectives on developing sustainable supply chains," Maritime Policy & Management, Taylor & Francis Journals, vol. 43(8), pages 909-927, November.
    9. Bahram Alidaee & Haibo Wang & Lutfu S. Sua, 2023. "The Last-Mile Delivery of Heavy, Bulky, Oversized Products: Literature Review and Research Agenda," Logistics, MDPI, vol. 7(4), pages 1-16, December.
    10. Tomislav Letnik & Katja Hanžič & Giuseppe Luppino & Matej Mencinger, 2022. "Impact of Logistics Trends on Freight Transport Development in Urban Areas," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    11. Tharsis Teoh & Oliver Kunze & Chee-Chong Teo & Yiik Diew Wong, 2018. "Decarbonisation of Urban Freight Transport Using Electric Vehicles and Opportunity Charging," Sustainability, MDPI, vol. 10(9), pages 1-20, September.
    12. Jesus Gonzalez-Feliu & Joëlle Morana, 2014. "Assessing urban logistics pooling sustainability via a hierarchic dashboard from a group decision perspective," Working Papers halshs-01053887, HAL.
    13. Pedro A. P. Dias & Hugo Yoshizaki & Patricia Favero & Jose Geraldo Vidal Vieira, 2019. "Daytime or Overnight Deliveries? Perceptions of Drivers and Retailers in São Paulo City," Sustainability, MDPI, vol. 11(22), pages 1-16, November.
    14. Bahareh Mansouri & Subhasmita Sahu & M. Ali Ülkü, 2023. "Toward Greening City Logistics: A Systematic Review on Corporate Governance and Social Responsibility in Managing Urban Distribution Centers," Logistics, MDPI, vol. 7(1), pages 1-20, March.
    15. Daniel Kaszubowski, 2019. "A Method for the Evaluation of Urban Freight Transport Models as a Tool for Improving the Delivery of Sustainable Urban Transport Policy," Sustainability, MDPI, vol. 11(6), pages 1-23, March.
    16. Snežana Tadić & Mladen Krstić & Ljubica Radovanović, 2024. "Assessing Strategies to Overcome Barriers for Drone Usage in Last-Mile Logistics: A Novel Hybrid Fuzzy MCDM Model," Mathematics, MDPI, vol. 12(3), pages 1-25, January.
    17. Sainath G. Bidikar & Santosh B. Rane & Prathamesh R. Potdar, 2022. "Product development using Design for Six Sigma approach: case study in switchgear industry," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 203-230, February.
    18. Feng Li & Zhi-Ping Fan & Bing-Bing Cao & Xin Li, 2020. "Logistics Service Mode Selection for Last Mile Delivery: An Analysis Method Considering Customer Utility and Delivery Service Cost," Sustainability, MDPI, vol. 13(1), pages 1-22, December.
    19. Santosh B. Rane & Sandesh Wavhal & Prathamesh R. Potdar, 2023. "Integration of Lean Six Sigma with Internet of Things (IoT) for productivity improvement: a case study of contactor manufacturing industry," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1990-2018, October.
    20. Magdalena Mucowska, 2021. "Trends of Environmentally Sustainable Solutions of Urban Last-Mile Deliveries on the E-Commerce Market—A Literature Review," Sustainability, MDPI, vol. 13(11), pages 1-26, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4302-:d:534932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.