IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i3p1853-d743112.html
   My bibliography  Save this article

Opportunities, Challenges, and Uncertainties in Urban Road Transport Automation

Author

Listed:
  • Steven E. Shladover

    (California PATH Program, Institute of Transportation Studies, University of California, Berkeley, CA 94720, USA
    Retired.)

Abstract

Automated driving has attracted intense attention in the media and among the general public, based on extremely optimistic predictions from some industry participants, but these have started to become more realistic in the last couple of years, after the “hype cycle” for automation peaked. This paper explains the opportunities for Automated Driving System (ADS) technology to improve the urban transport of people and goods, together with the challenges that will limit the scope and timing of the deployment of urban ADS. The discussion emphasizes the diversity of ADS applications and services, each of which has its own opportunities, challenges, and uncertainties, leading to diverse deployment scopes and schedules. The associated challenges are sufficiently daunting that ADS deployment will lag behind electrification and connectivity, leaving more time for cities to prepare for it.

Suggested Citation

  • Steven E. Shladover, 2022. "Opportunities, Challenges, and Uncertainties in Urban Road Transport Automation," Sustainability, MDPI, vol. 14(3), pages 1-19, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1853-:d:743112
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/3/1853/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/3/1853/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wadud, Zia & MacKenzie, Don & Leiby, Paul, 2016. "Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 1-18.
    2. Schaller, Bruce, 2021. "Can sharing a ride make for less traffic? Evidence from Uber and Lyft and implications for cities," Transport Policy, Elsevier, vol. 102(C), pages 1-10.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tengilimoglu, Oguz & Carsten, Oliver & Wadud, Zia, 2023. "Infrastructure requirements for the safe operation of automated vehicles: Opinions from experts and stakeholders," Transport Policy, Elsevier, vol. 133(C), pages 209-222.
    2. Veisi, Omid & Moradi, Mohammad Amin & Gharaei, Beheshteh & Maleki, Farid Jabbari & Rahbar, Morteza, 2025. "Sustainable forestry logistics: Using modified A-star algorithm for efficient timber transportation route optimization," Forest Policy and Economics, Elsevier, vol. 173(C).
    3. Zwick, Felix & Kuehnel, Nico & Hörl, Sebastian, 2022. "Shifts in perspective: Operational aspects in (non-)autonomous ride-pooling simulations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 300-320.
    4. Tengilimoglu, Oguz & Carsten, Oliver & Wadud, Zia, 2024. "The effects of infrastructure quality on the usefulness of automated vehicles: A case study for Leeds, UK," Journal of Transport Geography, Elsevier, vol. 121(C).
    5. Masoud Khanmohamadi & Marco Guerrieri, 2025. "Smart Intersections and Connected Autonomous Vehicles for Sustainable Smart Cities: A Brief Review," Sustainability, MDPI, vol. 17(7), pages 1-32, April.
    6. Tengilimoglu, Oguz & Carsten, Oliver & Wadud, Zia, 2024. "Are current roads ready for highly automated driving? A conceptual model for road readiness for AVs applied to the UK city of Leeds," Transportation Research Part A: Policy and Practice, Elsevier, vol. 186(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shiraki, Hiroto & Matsumoto, Ken'ichi & Shigetomi, Yosuke & Ehara, Tomoki & Ochi, Yuki & Ogawa, Yuki, 2020. "Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy," Applied Energy, Elsevier, vol. 259(C).
    2. Dubey, Subodh & Sharma, Ishant & Mishra, Sabyasachee & Cats, Oded & Bansal, Prateek, 2022. "A General Framework to Forecast the Adoption of Novel Products: A Case of Autonomous Vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 63-95.
    3. Wang, Xianing & Lu, Linjun & Zhang, Zhan & Wang, Ying & Li, Haoming, 2025. "Introducing the vehicle-infrastructure cooperative control system by quantifying the benefits for the scenario of signalized intersections," Transportation Research Part A: Policy and Practice, Elsevier, vol. 192(C).
    4. Dulebenets, Maxim A. & Ozguven, Eren Erman & Moses, Ren, 2018. "The Highway Beautification Act: Towards improving efficiency of the Federal Outdoor Advertising Control Program," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 88-106.
    5. Jia Guo & Yusak Susilo & Constantinos Antoniou & Anna Pernestål Brenden, 2020. "Influence of Individual Perceptions on the Decision to Adopt Automated Bus Services," Sustainability, MDPI, vol. 12(16), pages 1-13, August.
    6. Li, Dun & Huang, Youlin & Qian, Lixian, 2022. "Potential adoption of robotaxi service: The roles of perceived benefits to multiple stakeholders and environmental awareness," Transport Policy, Elsevier, vol. 126(C), pages 120-135.
    7. Raphael Hoerler & Fabian Haerri & Merja Hoppe, 2019. "New Solutions in Sustainable Commuting—The Attitudes and Experience of European Stakeholders and Experts in Switzerland," Social Sciences, MDPI, vol. 8(7), pages 1-19, July.
    8. Shelly Etzioni & Jamil Hamadneh & Arnór B. Elvarsson & Domokos Esztergár-Kiss & Milena Djukanovic & Stelios N. Neophytou & Jaka Sodnik & Amalia Polydoropoulou & Ioannis Tsouros & Cristina Pronello & N, 2020. "Modeling Cross-National Differences in Automated Vehicle Acceptance," Sustainability, MDPI, vol. 12(22), pages 1-22, November.
    9. Emberger, Guenter & Pfaffenbichler, Paul, 2020. "A quantitative analysis of potential impacts of automated vehicles in Austria using a dynamic integrated land use and transport interaction model," Transport Policy, Elsevier, vol. 98(C), pages 57-67.
    10. Zia Wadud & Muhammad Adeel & Jillian Anable, 2024. "Understanding the large role of long-distance travel in carbon emissions from passenger travel," Nature Energy, Nature, vol. 9(9), pages 1129-1138, September.
    11. Bray, Garrett & Cebon, David, 2022. "Operational speed strategy opportunities for autonomous trucking on highways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 75-94.
    12. Alatawneh, Anas & Torok, Adam, 2025. "Projecting AV sales in the EU-27 and UK: Insights from Euro emission standards and historical trends," Transport Policy, Elsevier, vol. 163(C), pages 91-101.
    13. Pi, Dawei & Xue, Pengyu & Wang, Weihua & Xie, Boyuan & Wang, Hongliang & Wang, Xianhui & Yin, Guodong, 2023. "Automotive platoon energy-saving: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    14. Meyer, Jonas & Becker, Henrik & Bösch, Patrick M. & Axhausen, Kay W., 2017. "Autonomous vehicles: The next jump in accessibilities?," Research in Transportation Economics, Elsevier, vol. 62(C), pages 80-91.
    15. André de Palma & Lucas Javaudin & Patrick Stokkink & Léandre Tarpin-Pitre, 2021. "Modelling Ridesharing in a Large Network with Dynamic Congestion," THEMA Working Papers 2021-16, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    16. Hasanburak Yucel & Murat Ergün & Gozde Bakioglu, 2025. "Will Conventional Public Transport Users Adopt Autonomous Public Transport? A Model Integrating UTAUT Model and Satisfaction–Loyalty Model," Sustainability, MDPI, vol. 17(20), pages 1-31, October.
    17. Moneim Massar & Imran Reza & Syed Masiur Rahman & Sheikh Muhammad Habib Abdullah & Arshad Jamal & Fahad Saleh Al-Ismail, 2021. "Impacts of Autonomous Vehicles on Greenhouse Gas Emissions—Positive or Negative?," IJERPH, MDPI, vol. 18(11), pages 1-23, May.
    18. Zeng, Junwei & Qian, Yongsheng & Li, Jiao & Zhang, Yongzhi & Xu, Dejie, 2023. "Congestion and energy consumption of heterogeneous traffic flow mixed with intelligent connected vehicles and platoons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    19. Dilshad Mohammed & Balázs Horváth, 2023. "Travel Demand Increment Due to the Use of Autonomous Vehicles," Sustainability, MDPI, vol. 15(11), pages 1-20, June.
    20. Hudson, John & Orviska, Marta & Hunady, Jan, 2019. "People’s attitudes to autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 164-176.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1853-:d:743112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.