IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i2p1042-d726913.html
   My bibliography  Save this article

Sustainability of Vertical Farming in Comparison with Conventional Farming: A Case Study in Miyagi Prefecture, Japan, on Nitrogen and Phosphorus Footprint

Author

Listed:
  • Jiarui Liu

    (Graduate School of Environmental Studies, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai 980-8572, Japan)

  • Azusa Oita

    (Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, Tsukuba 305-8604, Japan)

  • Kentaro Hayashi

    (Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, Tsukuba 305-8604, Japan
    Research Institute for Humanity and Nature, 457-4, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8047, Japan)

  • Kazuyo Matsubae

    (Graduate School of Environmental Studies, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai 980-8572, Japan)

Abstract

The reduced requirement for nutrients in vertical farming (VF) implies that the potential for lower environmental impact is greater in VF than in conventional farming. In this study, the environmental impacts of VF were evaluated based on a case study of VF for vegetables in Miyagi Prefecture in Japan, where VF has been utilized in post-disaster relief operations in the wake of the 2011 Great East Japan Earthquake. The nitrogen (N) and phosphorus (P) footprints of these VFs were determined and analyzed to quantify the potential reduction in N and P emissions. First, the N and P footprints in conventional farming were calculated. Then, those footprints were compared with three different scenarios with different ratios for food imports, which equate to different levels of food self-sufficiency. The results show a decrease in the N and P footprints with increased prefectural self-sufficiency due to the introduction of VF. In addition to reducing the risks to food supply by reducing the dependence on imports and the environmental impacts of agriculture, further analysis reveals that VF is suitable for use in many scenarios around the world to reliably provide food to local communities. Its low vulnerability to natural disasters makes VF well suited to places most at risk from climate change anomalies.

Suggested Citation

  • Jiarui Liu & Azusa Oita & Kentaro Hayashi & Kazuyo Matsubae, 2022. "Sustainability of Vertical Farming in Comparison with Conventional Farming: A Case Study in Miyagi Prefecture, Japan, on Nitrogen and Phosphorus Footprint," Sustainability, MDPI, vol. 14(2), pages 1-18, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:1042-:d:726913
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/2/1042/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/2/1042/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anthony Halog & Yosef Manik, 2011. "Advancing Integrated Systems Modelling Framework for Life Cycle Sustainability Assessment," Sustainability, MDPI, vol. 3(2), pages 1-31, February.
    2. Marco Springmann & Michael Clark & Daniel Mason-D’Croz & Keith Wiebe & Benjamin Leon Bodirsky & Luis Lassaletta & Wim Vries & Sonja J. Vermeulen & Mario Herrero & Kimberly M. Carlson & Malin Jonell & , 2018. "Options for keeping the food system within environmental limits," Nature, Nature, vol. 562(7728), pages 519-525, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio De Donno & Luca Antonio Tagliafico & Patrizia Bagnerini, 2025. "Innovation in Vertical Farming: A Model-Based Energy Assessment and Performance Comparison of Adaptive Versus Standard Systems," Sustainability, MDPI, vol. 17(18), pages 1-27, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Irene Blanco-Gutiérrez & Consuelo Varela-Ortega & Rhys Manners, 2020. "Evaluating Animal-Based Foods and Plant-Based Alternatives Using Multi-Criteria and SWOT Analyses," IJERPH, MDPI, vol. 17(21), pages 1-26, October.
    2. Vermunt, D.A. & Wojtynia, N. & Hekkert, M.P. & Van Dijk, J. & Verburg, R. & Verweij, P.A. & Wassen, M. & Runhaar, H., 2022. "Five mechanisms blocking the transition towards ‘nature-inclusive’ agriculture: A systemic analysis of Dutch dairy farming," Agricultural Systems, Elsevier, vol. 195(C).
    3. Li, Yilin & Chen, Bin & Li, Chaohui & Li, Zhi & Chen, Guoqian, 2020. "Energy perspective of Sino-US trade imbalance in global supply chains," Energy Economics, Elsevier, vol. 92(C).
    4. Birgit Kopainsky & Anita Frehner & Adrian Müller, 2020. "Sustainable and healthy diets: Synergies and trade‐offs in Switzerland," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 908-927, November.
    5. Nuno Aluai Carvalho & Maria da Conceição Martins, 2024. "Education to Promote Healthy and Sustainable Eating Habits: A Bibliometric Analysis," Sustainability, MDPI, vol. 16(22), pages 1-14, November.
    6. Paul Ofei-Manu & Satoshi Shimano, 2012. "In Transition towards Sustainability: Bridging the Business and Education Sectors of Regional Centre of Expertise Greater Sendai Using Education for Sustainable Development-Based Social Learning," Sustainability, MDPI, vol. 4(7), pages 1-26, July.
    7. Ejovi Akpojevwe Abafe & Yonas T. Bahta & Henry Jordaan, 2022. "Exploring Biblioshiny for Historical Assessment of Global Research on Sustainable Use of Water in Agriculture," Sustainability, MDPI, vol. 14(17), pages 1-34, August.
    8. Svjetlana Janković Šoja & Ana Anokić & Dana Bucalo Jelić & Radojka Maletić, 2016. "Ranking EU Countries According to Their Level of Success in Achieving the Objectives of the Sustainable Development Strategy," Sustainability, MDPI, vol. 8(4), pages 1-10, March.
    9. Ethan Gordon & Federico Davila & Chris Riedy, 2022. "Transforming landscapes and mindscapes through regenerative agriculture," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(2), pages 809-826, June.
    10. Elke Stehfest & Willem-Jan Zeist & Hugo Valin & Petr Havlik & Alexander Popp & Page Kyle & Andrzej Tabeau & Daniel Mason-D’Croz & Tomoko Hasegawa & Benjamin L. Bodirsky & Katherine Calvin & Jonathan C, 2019. "Key determinants of global land-use projections," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    11. Bauer, Jan M. & Aarestrup, Simon C. & Hansen, Pelle G. & Reisch, Lucia A., 2022. "Nudging more sustainable grocery purchases: Behavioural innovations in a supermarket setting," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    12. Renate Boronowsky & Kevin Lin-Yang & Lucretia Natanson & Kira Presley & Yashvi Reddy & Alexis Shenkiryk & May Wang & Wendelin Slusser & Pamela A. Koch & David A. Cleveland & Shannon Roback & Deborah O, 2025. "The Carbon Footprint of School Lunch: Moving Toward a Healthy and Sustainable Future for the Next Generation," Sustainability, MDPI, vol. 17(7), pages 1-21, March.
    13. Daniel H. Pope & Johan O. Karlsson & Phillip Baker & David McCoy, 2021. "Examining the Environmental Impacts of the Dairy and Baby Food Industries: Are First-Food Systems a Crucial Missing Part of the Healthy and Sustainable Food Systems Agenda Now Underway?," IJERPH, MDPI, vol. 18(23), pages 1-15, December.
    14. Man Yu & Anthony Halog, 2015. "Solar Photovoltaic Development in Australia—A Life Cycle Sustainability Assessment Study," Sustainability, MDPI, vol. 7(2), pages 1-35, January.
    15. Bin Fan & Mingyang Li, 2022. "The Effect of Heterogeneous Environmental Regulations on Carbon Emission Efficiency of the Grain Production Industry: Evidence from China’s Inter-Provincial Panel Data," Sustainability, MDPI, vol. 14(21), pages 1-27, November.
    16. Hales, Jan & Kemper, Joya & White, Samantha K. & Veer, Ekant, 2024. "Reflections on food policy in the context of healthy and sustainable diets," Food Policy, Elsevier, vol. 128(C).
    17. Giller, Ken E. & Andersson, Jens & Delaune, Thomas & Silva, João Vasco & Descheemaeker, Katrien & van de Ven, Gerrie & Schut, Antonius G.T. & van Wijk, Mark & Hammond, Jim & Hochman, Zvi & Taulya, God, "undated". "IFAD Research Series 83: The future of farming: who will produce our food?," IFAD Research Series 322005, International Fund for Agricultural Development (IFAD).
    18. Louis-Georges Soler & Alban Thomas, 2020. "Is there a win–win scenario with increased beef quality and reduced consumption?," Review of Agricultural, Food and Environmental Studies, Springer, vol. 101(1), pages 91-116, October.
    19. Jaume Freire-Gonz lez & Ignasi Puig-Ventosa, 2015. "Energy Efficiency Policies and the Jevons Paradox," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 69-79.
    20. al Irsyad, M. Indra & Halog, Anthony & Nepal, Rabindra, 2018. "Estimating the impacts of financing support policies towards photovoltaic market in Indonesia: A social-energy-economy-environment (SE3) model simulation," Working Papers 2018-09, University of Tasmania, Tasmanian School of Business and Economics.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:1042-:d:726913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.