IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p16317-d995526.html
   My bibliography  Save this article

Solar and Wind Energy Forecasting for Green and Intelligent Migration of Traditional Energy Sources

Author

Listed:
  • Syed Muhammad Mohsin

    (Department of Computer Science, COMSATS University Islamabad, Islamabad 45550, Pakistan
    College of Intellectual Novitiates (COIN), Virtual University of Pakistan, Lahore 55150, Pakistan)

  • Tahir Maqsood

    (Department of Computer Science, COMSATS University Islamabad, Abbottabad 22060, Pakistan)

  • Sajjad Ahmed Madani

    (Department of Computer Science, COMSATS University Islamabad, Islamabad 45550, Pakistan)

Abstract

Fossil-fuel-based power generation leads to higher energy costs and environmental impacts. Solar and wind energy are abundant important renewable energy sources (RES) that make the largest contribution to replacing fossil-fuel-based energy consumption. However, the uncertain solar radiation and highly fluctuating weather parameters of solar and wind energy require an accurate and reliable forecasting mechanism for effective and efficient load management, cost reduction, green environment, and grid stability. From the existing literature, artificial neural networks (ANN) are a better means for prediction, but the ANN-based renewable energy forecasting techniques lose prediction accuracy due to the high uncertainty of input data and random determination of initial weights among different layers of ANN. Therefore, the objective of this study is to develop a harmony search algorithm (HSA)-optimized ANN model for reliable and accurate prediction of solar and wind energy. In this study, we combined ANN with HSA and provided ANN feedback for its weights adjustment to HSA, instead of ANN. Then, the HSA optimized weights were assigned to the edges of ANN instead of random weights, and this completes the training of ANN. Extensive simulations were carried out and our proposed HSA-optimized ANN model for solar irradiation forecast achieved the values of MSE = 0.04754, MAE = 0.18546, MAPE = 0.32430%, and RMSE = 0.21805, whereas our proposed HSA-optimized ANN model for wind speed prediction achieved the values of MSE = 0.30944, MAE = 0.47172, MAPE = 0.12896%, and RMSE = 0.55627. Simulation results prove the supremacy of our proposed HSA-optimized ANN models compared to state-of-the-art solar and wind energy forecasting techniques.

Suggested Citation

  • Syed Muhammad Mohsin & Tahir Maqsood & Sajjad Ahmed Madani, 2022. "Solar and Wind Energy Forecasting for Green and Intelligent Migration of Traditional Energy Sources," Sustainability, MDPI, vol. 14(23), pages 1-20, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16317-:d:995526
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/16317/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/16317/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sheraz Aslam & Nadeem Javaid & Farman Ali Khan & Atif Alamri & Ahmad Almogren & Wadood Abdul, 2018. "Towards Efficient Energy Management and Power Trading in a Residential Area via Integrating a Grid-Connected Microgrid," Sustainability, MDPI, vol. 10(4), pages 1-21, April.
    2. Lilin Cheng & Haixiang Zang & Tao Ding & Rong Sun & Miaomiao Wang & Zhinong Wei & Guoqiang Sun, 2018. "Ensemble Recurrent Neural Network Based Probabilistic Wind Speed Forecasting Approach," Energies, MDPI, vol. 11(8), pages 1-23, July.
    3. Siavash Asiaban & Nezmin Kayedpour & Arash E. Samani & Dimitar Bozalakov & Jeroen D. M. De Kooning & Guillaume Crevecoeur & Lieven Vandevelde, 2021. "Wind and Solar Intermittency and the Associated Integration Challenges: A Comprehensive Review Including the Status in the Belgian Power System," Energies, MDPI, vol. 14(9), pages 1-41, May.
    4. Zafar Iqbal & Nadeem Javaid & Syed Muhammad Mohsin & Syed Muhammad Abrar Akber & Muhammad Khalil Afzal & Farruh Ishmanov, 2018. "Performance Analysis of Hybridization of Heuristic Techniques for Residential Load Scheduling," Energies, MDPI, vol. 11(10), pages 1-31, October.
    5. Byung-ki Jeon & Eui-Jong Kim, 2020. "Next-Day Prediction of Hourly Solar Irradiance Using Local Weather Forecasts and LSTM Trained with Non-Local Data," Energies, MDPI, vol. 13(20), pages 1-16, October.
    6. Jebli, Imane & Belouadha, Fatima-Zahra & Kabbaj, Mohammed Issam & Tilioua, Amine, 2021. "Prediction of solar energy guided by pearson correlation using machine learning," Energy, Elsevier, vol. 224(C).
    7. Mahima Dubey & Vijay Kumar & Manjit Kaur & Thanh-Phong Dao, 2021. "A Systematic Review on Harmony Search Algorithm: Theory, Literature, and Applications," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-22, April.
    8. Giorgio Guariso & Giuseppe Nunnari & Matteo Sangiorgio, 2020. "Multi-Step Solar Irradiance Forecasting and Domain Adaptation of Deep Neural Networks," Energies, MDPI, vol. 13(15), pages 1-18, August.
    9. Ewa Chomać-Pierzecka & Andrzej Kokiel & Joanna Rogozińska-Mitrut & Anna Sobczak & Dariusz Soboń & Jacek Stasiak, 2022. "Analysis and Evaluation of the Photovoltaic Market in Poland and the Baltic States," Energies, MDPI, vol. 15(2), pages 1-16, January.
    10. Zhao, Yang & Li, Jianping & Yu, Lean, 2017. "A deep learning ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 66(C), pages 9-16.
    11. Aslam, Sheraz & Herodotou, Herodotos & Mohsin, Syed Muhammad & Javaid, Nadeem & Ashraf, Nouman & Aslam, Shahzad, 2021. "A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    12. Wang, Huai-zhi & Li, Gang-qiang & Wang, Gui-bin & Peng, Jian-chun & Jiang, Hui & Liu, Yi-tao, 2017. "Deep learning based ensemble approach for probabilistic wind power forecasting," Applied Energy, Elsevier, vol. 188(C), pages 56-70.
    13. Cameron Hepburn, 2006. "Regulation by Prices, Quantities, or Both: A Review of Instrument Choice," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 22(2), pages 226-247, Summer.
    14. Mohandes, M.A. & Halawani, T.O. & Rehman, S. & Hussain, Ahmed A., 2004. "Support vector machines for wind speed prediction," Renewable Energy, Elsevier, vol. 29(6), pages 939-947.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panagiotis Korkidis & Anastasios Dounis, 2023. "Intelligent Fuzzy Models: WM, ANFIS, and Patch Learning for the Competitive Forecasting of Environmental Variables," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
    2. Guilherme Henrique Alves & Geraldo Caixeta Guimarães & Fabricio Augusto Matheus Moura, 2023. "Battery Storage Systems Control Strategies with Intelligent Algorithms in Microgrids with Dynamic Pricing," Energies, MDPI, vol. 16(14), pages 1-30, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aslam, Sheraz & Herodotou, Herodotos & Mohsin, Syed Muhammad & Javaid, Nadeem & Ashraf, Nouman & Aslam, Shahzad, 2021. "A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Sharifzadeh, Mahdi & Sikinioti-Lock, Alexandra & Shah, Nilay, 2019. "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 513-538.
    3. Zhang, Shuai & Chen, Yong & Xiao, Jiuhong & Zhang, Wenyu & Feng, Ruijun, 2021. "Hybrid wind speed forecasting model based on multivariate data secondary decomposition approach and deep learning algorithm with attention mechanism," Renewable Energy, Elsevier, vol. 174(C), pages 688-704.
    4. Ke Yan & Yuting Dai & Meiling Xu & Yuchang Mo, 2019. "Tunnel Surface Settlement Forecasting with Ensemble Learning," Sustainability, MDPI, vol. 12(1), pages 1-11, December.
    5. Zhang, Shuangyi & Li, Xichen, 2021. "Future projections of offshore wind energy resources in China using CMIP6 simulations and a deep learning-based downscaling method," Energy, Elsevier, vol. 217(C).
    6. Nam, KiJeon & Hwangbo, Soonho & Yoo, ChangKyoo, 2020. "A deep learning-based forecasting model for renewable energy scenarios to guide sustainable energy policy: A case study of Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    7. Danxiang Wei & Jianzhou Wang & Kailai Ni & Guangyu Tang, 2019. "Research and Application of a Novel Hybrid Model Based on a Deep Neural Network Combined with Fuzzy Time Series for Energy Forecasting," Energies, MDPI, vol. 12(18), pages 1-38, September.
    8. Hong, Ying-Yi & Satriani, Thursy Rienda Aulia, 2020. "Day-ahead spatiotemporal wind speed forecasting using robust design-based deep learning neural network," Energy, Elsevier, vol. 209(C).
    9. Suryanarayana, Gowri & Lago, Jesus & Geysen, Davy & Aleksiejuk, Piotr & Johansson, Christian, 2018. "Thermal load forecasting in district heating networks using deep learning and advanced feature selection methods," Energy, Elsevier, vol. 157(C), pages 141-149.
    10. Li, Jianping & Li, Guowen & Liu, Mingxi & Zhu, Xiaoqian & Wei, Lu, 2022. "A novel text-based framework for forecasting agricultural futures using massive online news headlines," International Journal of Forecasting, Elsevier, vol. 38(1), pages 35-50.
    11. Yukta Mehta & Rui Xu & Benjamin Lim & Jane Wu & Jerry Gao, 2023. "A Review for Green Energy Machine Learning and AI Services," Energies, MDPI, vol. 16(15), pages 1-30, July.
    12. Qian, Zheng & Pei, Yan & Zareipour, Hamidreza & Chen, Niya, 2019. "A review and discussion of decomposition-based hybrid models for wind energy forecasting applications," Applied Energy, Elsevier, vol. 235(C), pages 939-953.
    13. Liao, Kaihua & Lv, Ligang & Lai, Xiaoming & Zhu, Qing, 2021. "Toward a framework for the multimodel ensemble prediction of soil nitrogen losses," Ecological Modelling, Elsevier, vol. 456(C).
    14. Omer Berat Sezer & Mehmet Ugur Gudelek & Ahmet Murat Ozbayoglu, 2019. "Financial Time Series Forecasting with Deep Learning : A Systematic Literature Review: 2005-2019," Papers 1911.13288, arXiv.org.
    15. Chen, Xi & Yu, Ruyi & Ullah, Sajid & Wu, Dianming & Li, Zhiqiang & Li, Qingli & Qi, Honggang & Liu, Jihui & Liu, Min & Zhang, Yundong, 2022. "A novel loss function of deep learning in wind speed forecasting," Energy, Elsevier, vol. 238(PB).
    16. Junyong Wu & Chen Shi & Meiyang Shao & Ran An & Xiaowen Zhu & Xing Huang & Rong Cai, 2019. "Reactive Power Optimization of a Distribution System Based on Scene Matching and Deep Belief Network," Energies, MDPI, vol. 12(17), pages 1-24, August.
    17. Gun Il Kim & Beakcheol Jang, 2023. "Petroleum Price Prediction with CNN-LSTM and CNN-GRU Using Skip-Connection," Mathematics, MDPI, vol. 11(3), pages 1-16, January.
    18. Nathan Oaks Farrar & Mohd Hasan Ali & Dipankar Dasgupta, 2023. "Artificial Intelligence and Machine Learning in Grid Connected Wind Turbine Control Systems: A Comprehensive Review," Energies, MDPI, vol. 16(3), pages 1-25, February.
    19. Kui Wang & Jie Wan & Gang Li & Hao Sun, 2022. "A Hybrid Algorithm-Level Ensemble Model for Imbalanced Credit Default Prediction in the Energy Industry," Energies, MDPI, vol. 15(14), pages 1-18, July.
    20. Gonçalves, Rui & Ribeiro, Vitor Miguel & Pereira, Fernando Lobo & Rocha, Ana Paula, 2019. "Deep learning in exchange markets," Information Economics and Policy, Elsevier, vol. 47(C), pages 38-51.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16317-:d:995526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.