IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p15296-d976137.html
   My bibliography  Save this article

Performance Assessment of Direct Vapor Generation Solar Organic Rankine Cycle System Coupled with Heat Storage

Author

Listed:
  • Jahan Zeb Alvi

    (School of Mechanical Engineering, Jiangnan University, Wuxi 214024, China)

  • Yu Jinghu

    (School of Mechanical Engineering, Jiangnan University, Wuxi 214024, China)

  • Yongqiang Feng

    (School of Energy and Power Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China)

  • Muhammad Asim

    (School of Professional Education & Executive Development, The Hong Kong Polytechnic University, Kowloon, Hong Kong)

  • Wang Qian

    (School of Energy and Power Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China)

  • Gang Pei

    (Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, China)

Abstract

Phase change materials employed as thermal energy storage can aid in maximizing the use of stored solar energy. The current research examined the impact of three kinds of phase change materials (PCMs) on the dynamic performance of a solar organic Rankine cycle (ORC) system based on a direct vapor production. A number of evacuated flat plate collectors, a condenser, an expander, and an organic fluid pump make up this system. The thermodynamic cycle model of the direct vapor generation (DVG) solar ORC system was combined with the finite difference model of a phase change material heat storage tank created in MATLAB. The effect of PCMs (Organic, Inorganic and Eutectic PCMs) on the collector, ORC, and system efficiency, net power output, PCM temperature, and heat stored was studied weekly, monthly, and annually. Among the selected PCMs, Mg(NO3) 2 .6H 2 O had the highest system efficiency at 9.34%; KNO 3 -NaNO 2 had the highest net power output at 33.80 kW; and MgCl 2 .6H 2 O stored the maximum energy of 20.18 MJ annually. Under the given operational and boundary conditions, the spring and fall were preferable to the summer and winter months for storing heat from phase change materials.

Suggested Citation

  • Jahan Zeb Alvi & Yu Jinghu & Yongqiang Feng & Muhammad Asim & Wang Qian & Gang Pei, 2022. "Performance Assessment of Direct Vapor Generation Solar Organic Rankine Cycle System Coupled with Heat Storage," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15296-:d:976137
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/15296/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/15296/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gang, Pei & Jing, Li & Jie, Ji, 2011. "Design and analysis of a novel low-temperature solar thermal electric system with two-stage collectors and heat storage units," Renewable Energy, Elsevier, vol. 36(9), pages 2324-2333.
    2. Pereira da Cunha, Jose & Eames, Philip, 2016. "Thermal energy storage for low and medium temperature applications using phase change materials – A review," Applied Energy, Elsevier, vol. 177(C), pages 227-238.
    3. Muhammad Asim & Faiza Kashif & Jamal Umer & Jahan Zeb Alvi & Muhammad Imran & Sheheryar Khan & Abdul Wasy Zia & Michael K. H. Leung, 2021. "Performance Assessment and Working Fluid Selection for Novel Integrated Vapor Compression Cycle and Organic Rankine Cycle for Ultra Low Grade Waste Heat Recovery," Sustainability, MDPI, vol. 13(21), pages 1-16, October.
    4. Alvi, Jahan Zeb & Feng, Yongqiang & Wang, Qian & Imran, Muhammad & Pei, Gang, 2021. "Effect of phase change materials on the performance of direct vapor generation solar organic Rankine cycle system," Energy, Elsevier, vol. 223(C).
    5. Imran, Muhammad & Haglind, Fredrik & Asim, Muhammad & Zeb Alvi, Jahan, 2018. "Recent research trends in organic Rankine cycle technology: A bibliometric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 552-562.
    6. Peng, Shuo & Hong, Hui & Jin, Hongguang & Wang, Zhifeng, 2012. "An integrated solar thermal power system using intercooled gas turbine and Kalina cycle," Energy, Elsevier, vol. 44(1), pages 732-740.
    7. Usman, Muhammad & Imran, Muhammad & Yang, Youngmin & Lee, Dong Hyun & Park, Byung-Sik, 2017. "Thermo-economic comparison of air-cooled and cooling tower based Organic Rankine Cycle (ORC) with R245fa and R1233zde as candidate working fluids for different geographical climate conditions," Energy, Elsevier, vol. 123(C), pages 353-366.
    8. S. M. Seyed Mahmoudi & Niloufar Sarabchi & Mortaza Yari & Marc A. Rosen, 2019. "Exergy and Exergoeconomic Analyses of a Combined Power Producing System including a Proton Exchange Membrane Fuel Cell and an Organic Rankine Cycle," Sustainability, MDPI, vol. 11(12), pages 1-25, June.
    9. A. M. Soliman & Abdullah G. Alharbi & Mohamed A. Sharaf Eldean, 2021. "Techno-Economic Optimization of a Solar–Wind Hybrid System to Power a Large-Scale Reverse Osmosis Desalination Plant," Sustainability, MDPI, vol. 13(20), pages 1-20, October.
    10. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    11. Manfrida, Giampaolo & Secchi, Riccardo & Stańczyk, Kamil, 2016. "Modelling and simulation of phase change material latent heat storages applied to a solar-powered Organic Rankine Cycle," Applied Energy, Elsevier, vol. 179(C), pages 378-388.
    12. Andrea Cinocca & Marco Di Bartolomeo & Roberto Cipollone & Roberto Carapellucci, 2020. "A Definitive Model of a Small-Scale Concentrated Solar Power Hybrid Plant Using Air as Heat Transfer Fluid with a Thermal Storage Section and ORC Plants for Energy Recovery," Energies, MDPI, vol. 13(18), pages 1-22, September.
    13. Li, Jing & Li, Pengcheng & Pei, Gang & Alvi, Jahan Zeb & Ji, Jie, 2016. "Analysis of a novel solar electricity generation system using cascade Rankine cycle and steam screw expander," Applied Energy, Elsevier, vol. 165(C), pages 627-638.
    14. Wang, J.L. & Zhao, L. & Wang, X.D., 2012. "An experimental study on the recuperative low temperature solar Rankine cycle using R245fa," Applied Energy, Elsevier, vol. 94(C), pages 34-40.
    15. Agyenim, Francis & Hewitt, Neil & Eames, Philip & Smyth, Mervyn, 2010. "A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 615-628, February.
    16. Tian, Y. & Zhao, C.Y., 2013. "A review of solar collectors and thermal energy storage in solar thermal applications," Applied Energy, Elsevier, vol. 104(C), pages 538-553.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Pengcheng & Ye, Jing & Li, Jing & Wang, Yandong & Jiang, Xiaobin & Qian, Tongle & Pei, Gang & Liu, Xunfen, 2023. "Thermodynamic and techno-economic analysis of a direct thermal oil vaporization solar power system," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jahan Zeb Alvi & Yongqiang Feng & Qian Wang & Muhammad Imran & Lehar Asip Khan & Gang Pei, 2020. "Effect of Phase Change Material Storage on the Dynamic Performance of a Direct Vapor Generation Solar Organic Rankine Cycle System," Energies, MDPI, vol. 13(22), pages 1-19, November.
    2. Alvi, Jahan Zeb & Feng, Yongqiang & Wang, Qian & Imran, Muhammad & Pei, Gang, 2021. "Effect of phase change materials on the performance of direct vapor generation solar organic Rankine cycle system," Energy, Elsevier, vol. 223(C).
    3. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    4. Khan, Zakir & Khan, Zulfiqar Ahmad, 2017. "Experimental investigations of charging/melting cycles of paraffin in a novel shell and tube with longitudinal fins based heat storage design solution for domestic and industrial applications," Applied Energy, Elsevier, vol. 206(C), pages 1158-1168.
    5. Manfrida, Giampaolo & Secchi, Riccardo & Stańczyk, Kamil, 2016. "Modelling and simulation of phase change material latent heat storages applied to a solar-powered Organic Rankine Cycle," Applied Energy, Elsevier, vol. 179(C), pages 378-388.
    6. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
    7. Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
    8. He, Chao & Liu, Chao & Zhou, Mengtong & Xie, Hui & Xu, Xiaoxiao & Wu, Shuangying & Li, Yourong, 2014. "A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources," Energy, Elsevier, vol. 68(C), pages 283-291.
    9. Lukas Hegner & Stefan Krimmel & Rebecca Ravotti & Dominic Festini & Jörg Worlitschek & Anastasia Stamatiou, 2021. "Experimental Feasibility Study of a Direct Contact Latent Heat Storage Using an Ester as a Bio-Based Storage Material," Energies, MDPI, vol. 14(2), pages 1-26, January.
    10. Babras Khan & Man-Hoe Kim, 2022. "Energy and Exergy Analyses of a Novel Combined Heat and Power System Operated by a Recuperative Organic Rankine Cycle Integrated with a Water Heating System," Energies, MDPI, vol. 15(18), pages 1-19, September.
    11. Tieyu Gao & Changwei Liu, 2017. "Off-Design Performances of Subcritical and Supercritical Organic Rankine Cycles in Geothermal Power Systems under an Optimal Control Strategy," Energies, MDPI, vol. 10(8), pages 1-25, August.
    12. Wang, Ruilin & Qu, Wanjun & Hong, Hui & Sun, Jie & Jin, Hongguang, 2018. "Experimental performance of 300 kWth prototype of parabolic trough collector with rotatable axis and irreversibility analysis," Energy, Elsevier, vol. 161(C), pages 595-609.
    13. Yu, Xiaoli & Li, Zhi & Lu, Yiji & Huang, Rui & Roskilly, Anthony Paul, 2019. "Investigation of organic Rankine cycle integrated with double latent thermal energy storage for engine waste heat recovery," Energy, Elsevier, vol. 170(C), pages 1098-1112.
    14. Cavazzini, G. & Bari, S. & Pavesi, G. & Ardizzon, G., 2017. "A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles," Energy, Elsevier, vol. 129(C), pages 42-58.
    15. Ur Rehman, Ata & Zhao, Tianyu & Shah, Muhammad Zahir & Khan, Yaqoob & Hayat, Asif & Dang, Changwei & Zheng, Maosheng & Yun, Sining, 2023. "Nanoengineering of MgSO4 nanohybrid on MXene substrate for efficient thermochemical heat storage material," Applied Energy, Elsevier, vol. 332(C).
    16. Li, Yantong & Huang, Gongsheng & Xu, Tao & Liu, Xiaoping & Wu, Huijun, 2018. "Optimal design of PCM thermal storage tank and its application for winter available open-air swimming pool," Applied Energy, Elsevier, vol. 209(C), pages 224-235.
    17. Xu, Haoxin & Romagnoli, Alessandro & Sze, Jia Yin & Py, Xavier, 2017. "Application of material assessment methodology in latent heat thermal energy storage for waste heat recovery," Applied Energy, Elsevier, vol. 187(C), pages 281-290.
    18. Mohammadreza Ebrahimnataj Tiji & Jasim M. Mahdi & Hayder I. Mohammed & Hasan Sh. Majdi & Abbas Ebrahimi & Rohollah Babaei Mahani & Pouyan Talebizadehsardari & Wahiba Yaïci, 2021. "Natural Convection Effect on Solidification Enhancement in a Multi-Tube Latent Heat Storage System: Effect of Tubes’ Arrangement," Energies, MDPI, vol. 14(22), pages 1-23, November.
    19. Islam, Md. Parvez & Morimoto, Tetsuo, 2018. "Advances in low to medium temperature non-concentrating solar thermal technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2066-2093.
    20. Daniarta, Sindu & Nemś, Magdalena & Kolasiński, Piotr, 2023. "A review on thermal energy storage applicable for low- and medium-temperature organic Rankine cycle," Energy, Elsevier, vol. 278(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15296-:d:976137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.