IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p15041-d972163.html
   My bibliography  Save this article

Research Regarding the Coupling and Coordination Relationship between New Urbanization and Ecosystem Services in Nanchang

Author

Listed:
  • Yangcheng Hu

    (School of Business Administration, Nanchang Institute of Technology, Nanchang 330099, China)

  • Yi Liu

    (School of Business Administration, Nanchang Institute of Technology, Nanchang 330099, China)

  • Zhongyue Yan

    (School of Business Administration, Nanchang Institute of Technology, Nanchang 330099, China)

Abstract

The new urbanization (NU) will lead to changed land use types, affecting the ecological environment and ecosystem service value (ESV). The NU is affected by the ecological environment because of resource scarcity when the ecological environment is damaged. NU levels and ESV were used to evaluate the degree of urbanization development and value provided by ecosystem services (ES), respectively, and to analyze their coupling and coordination relationships. This study shows that (1) the Nanchang city NU increases annually, at an accelerated rate, while the city scale continuously expands. Among the various NU subsystems, economy and spatial urbanization are primary, and the remaining subsystems are secondary. (2) In terms of the area of each land use in Nanchang, arable land is the most widely distributed, followed by forest land, and water. The land type with the greatest change was development land, followed by arable land. (3) ESV declined during the study period, with water and forest land being the main ESV components. Hydrological regulation had the greatest contribution among the individual services, while maintaining the nutrient cycle had the minimal contribution. The high-value areas of Nanchang ecology were mainly located in the northeast corner and the water location in the southeast, while the low-value areas were mainly located in the central Nanchang county area. (4) The coupling degree (CD) of Nanchang’s NU and ES showed an inverted U-shaped development trend, first increasing and then decreasing. The coupling coordination degree also showed the same trend and exhibited fluctuation in the evolution process.

Suggested Citation

  • Yangcheng Hu & Yi Liu & Zhongyue Yan, 2022. "Research Regarding the Coupling and Coordination Relationship between New Urbanization and Ecosystem Services in Nanchang," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15041-:d:972163
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/15041/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/15041/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kun Wang & Yingkai Tang & Yaozhi Chen & Longwen Shang & Xuanming Ji & Mengchao Yao & Ping Wang, 2020. "The Coupling and Coordinated Development from Urban Land Using Benefits and Urbanization Level: Case Study from Fujian Province (China)," IJERPH, MDPI, vol. 17(16), pages 1-18, August.
    2. Kaize Zhang & Juqin Shen & Ran He & Bihang Fan & Han Han, 2019. "Dynamic Analysis of the Coupling Coordination Relationship between Urbanization and Water Resource Security and Its Obstacle Factor," IJERPH, MDPI, vol. 16(23), pages 1-16, November.
    3. Costanza, Robert & d'Arge, Ralph & de Groot, Rudolf & Farber, Stephen & Grasso, Monica & Hannon, Bruce & Limburg, Karin & Naeem, Shahid & O'Neill, Robert V. & Paruelo, Jose, 1998. "The value of the world's ecosystem services and natural capital," Ecological Economics, Elsevier, vol. 25(1), pages 3-15, April.
    4. Zhang, Fan & Wang, Xiao Hua & Nunes, Paulo A.L.D. & Ma, Chunbo, 2015. "The recreational value of gold coast beaches, Australia: An application of the travel cost method," Ecosystem Services, Elsevier, vol. 11(C), pages 106-114.
    5. Han Han & Huimin Li & Kaize Zhang, 2019. "Spatial-Temporal Coupling Analysis of the Coordination between Urbanization and Water Ecosystem in the Yangtze River Economic Belt," IJERPH, MDPI, vol. 16(19), pages 1-18, October.
    6. Caparrós, Alejandro & Oviedo, José L. & Álvarez, Alejandro & Campos, Pablo, 2017. "Simulated exchange values and ecosystem accounting: Theory and application to free access recreation," Ecological Economics, Elsevier, vol. 139(C), pages 140-149.
    7. Johan Rockström & Will Steffen & Kevin Noone & Åsa Persson & F. Stuart Chapin & Eric F. Lambin & Timothy M. Lenton & Marten Scheffer & Carl Folke & Hans Joachim Schellnhuber & Björn Nykvist & Cynthia , 2009. "A safe operating space for humanity," Nature, Nature, vol. 461(7263), pages 472-475, September.
    8. Jiangjun Wan & Yuxin Li & Chunchi Ma & Tian Jiang & Yi Su & Lingqing Zhang & Xueqian Song & Haiying Sun & Ziming Wang & Yutong Zhao & Kaili Zhang & Jinxiu Yang, 2021. "Measurement of Coupling Coordination Degree and Spatio-Temporal Characteristics of the Social Economy and Ecological Environment in the Chengdu–Chongqing Urban Agglomeration under High-Quality Develop," IJERPH, MDPI, vol. 18(21), pages 1-18, November.
    9. Nektarios Aslanidis & Susana Iranzo, 2009. "Environment and development: is there a Kuznets curve for CO2 emissions?," Applied Economics, Taylor & Francis Journals, vol. 41(6), pages 803-810.
    10. AkbostancI, Elif & Türüt-AsIk, Serap & Tunç, G. Ipek, 2009. "The relationship between income and environment in Turkey: Is there an environmental Kuznets curve?," Energy Policy, Elsevier, vol. 37(3), pages 861-867, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qingsong Ni & Xue Ma & Ruiming Duan & Yan Liang & Peng Cui, 2024. "Research on the Coupling Co-ordination between Quality of County-Level New Urbanization and Ecosystem Service Value in Shaanxi Province," Land, MDPI, vol. 13(1), pages 1-23, January.
    2. Heng Wang & Yuting Tang, 2023. "Spatiotemporal Distribution and Influencing Factors of Coupling Coordination between Digital Village and Green and High-Quality Agricultural Development—Evidence from China," Sustainability, MDPI, vol. 15(10), pages 1-22, May.
    3. Pingyi Ma & Xueyan Zhao & Hua Li, 2023. "Spatial–Temporal Evolution of Socio-Ecological System Vulnerability on the Loess Plateau under Rapid Urbanization," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    4. Zhongwu Zhang & Jinyuan Zhang & Liping Liu & Jian Gong & Jinqiang Li & Lei Kang, 2023. "Spatial–Temporal Heterogeneity of Urbanization and Ecosystem Services in the Yellow River Basin," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    5. Zhenggen Fan & Qingqing Luo & Hu Yu & Ji Liu & Wentong Xia, 2023. "Spatial–Temporal Evolution of the Coupling Coordination Degree between Water and Land Resources Matching and Cultivated Land Use Eco-Efficiency: A Case Study of the Major Grain-Producing Areas in the ," Land, MDPI, vol. 12(5), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imen Gam, 2022. "Does a sanitary crisis drive oil prices and carbon emissions in the USA? Evidence from VECM modeling," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 10616-10632, September.
    2. Xin Huang & Juqin Shen & Fuhua Sun & Lunyan Wang & Pengchao Zhang & Yu Wan, 2023. "Study on the Spatial and Temporal Distribution of the High–Quality Development of Urbanization and Water Resource Coupling in the Yellow River Basin," Sustainability, MDPI, vol. 15(16), pages 1-26, August.
    3. Atwi, Majed & Barberán, Ramón & Mur, Jesús & Angulo, Ana, 2018. "CO2 Kuznets Curve Revisited: From Cross-Sections to Panel Data Models," INVESTIGACIONES REGIONALES - Journal of REGIONAL RESEARCH, Asociación Española de Ciencia Regional, issue 40, pages 169-196.
    4. Per Angelstam & Terrence Bush & Michael Manton, 2023. "Challenges and Solutions for Forest Biodiversity Conservation in Sweden: Assessment of Policy, Implementation Outputs, and Consequences," Land, MDPI, vol. 12(5), pages 1-58, May.
    5. Daxue Kan & Wenqing Yao & Xia Liu & Lianju Lyu & Weichiao Huang, 2023. "Study on the Coordination of New Urbanization and Water Ecological Civilization and Its Driving Factors: Evidence from the Yangtze River Economic Belt, China," Land, MDPI, vol. 12(6), pages 1-24, June.
    6. Yang, Guangfei & Sun, Tao & Wang, Jianliang & Li, Xianneng, 2015. "Modeling the nexus between carbon dioxide emissions and economic growth," Energy Policy, Elsevier, vol. 86(C), pages 104-117.
    7. Helen Kopnina, 2013. "Forsaking Nature? Contesting ‘Biodiversity’ Through Competing Discourses of Sustainability," Journal of Education for Sustainable Development, , vol. 7(1), pages 51-63, March.
    8. Qian Chen & Yuzhe Bi & Jiangfeng Li, 2021. "Spatial Disparity and Influencing Factors of Coupling Coordination Development of Economy–Environment–Tourism–Traffic: A Case Study in the Middle Reaches of Yangtze River Urban Agglomerations," IJERPH, MDPI, vol. 18(15), pages 1-22, July.
    9. Daxue Kan & Xinya Ye & Lianju Lyu & Weichiao Huang, 2022. "Study on the Coupling Coordination between New-Type Urbanization and Water Ecological Environment and Its Driving Factors: Evidence from Jiangxi Province, China," IJERPH, MDPI, vol. 19(16), pages 1-16, August.
    10. Sharma, Susan Sunila, 2011. "Determinants of carbon dioxide emissions: Empirical evidence from 69 countries," Applied Energy, Elsevier, vol. 88(1), pages 376-382, January.
    11. Sinha, Avik & Bhattacharya, Joysankar, 2017. "Estimation of environmental Kuznets curve for SO2 emission: A case of Indian cities," MPRA Paper 100009, University Library of Munich, Germany.
    12. Samuel Kaheesi Kusiima & Anthony Egeru & Justine Namaalwa & Patrick Byakagaba & David Mfitumukiza & Paul Mukwaya & Sylvanus Mensah & Robert Asiimwe, 2022. "Interconnectedness of Ecosystem Services Potential with Land Use/Land Cover Change Dynamics in Western Uganda," Land, MDPI, vol. 11(11), pages 1-26, November.
    13. Wai Soe Zin & Aya Suzuki & Kelvin S.-H. Peh & Alexandros Gasparatos, 2019. "Economic Value of Cultural Ecosystem Services from Recreation in Popa Mountain National Park, Myanmar: A Comparison of Two Rapid Valuation Techniques," Land, MDPI, vol. 8(12), pages 1-20, December.
    14. Khan, Syed Abdul Rehman & Zaman, Khalid & Zhang, Yu, 2016. "The relationship between energy-resource depletion, climate change, health resources and the environmental Kuznets curve: Evidence from the panel of selected developed countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 468-477.
    15. Fujii, Hidemichi & Managi, Shunsuke, 2013. "Which industry is greener? An empirical study of nine industries in OECD countries," Energy Policy, Elsevier, vol. 57(C), pages 381-388.
    16. Nelson, Ewan & Warren, Peter, 2020. "UK transport decoupling: On track for clean growth in transport?," Transport Policy, Elsevier, vol. 90(C), pages 39-51.
    17. Richter, Andries & Dakos, Vasilis, 2015. "Profit fluctuations signal eroding resilience of natural resources," Ecological Economics, Elsevier, vol. 117(C), pages 12-21.
    18. Yue, Shen & Munir, Irfan Ullah & Hyder, Shabir & Nassani, Abdelmohsen A. & Qazi Abro, Muhammad Moinuddin & Zaman, Khalid, 2020. "Sustainable food production, forest biodiversity and mineral pricing: Interconnected global issues," Resources Policy, Elsevier, vol. 65(C).
    19. Rostami-Tabar, Bahman & Ali, Mohammad M. & Hong, Tao & Hyndman, Rob J. & Porter, Michael D. & Syntetos, Aris, 2022. "Forecasting for social good," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1245-1257.
    20. Huiyuan Guan & Yongping Bai & Chunyue Zhang, 2022. "Research on Ecosystem Security and Restoration Pattern of Urban Agglomeration in the Yellow River Basin," Sustainability, MDPI, vol. 14(18), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15041-:d:972163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.