IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11536-d914967.html
   My bibliography  Save this article

Population Dynamics of Methanogenic Archea in Co-Digestion Systems Operating Different Industrial Residues for Biogas Production

Author

Listed:
  • Isabela Gomes Barreto da Motta

    (Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora Campus, Juiz de Fora 36036-900, Brazil)

  • Larice Aparecida Rezende Santana

    (Postgraduate Program in Science and Technology of Milk and Dairy Products, Health Sciences Center, Federal University of Juiz de Fora, Juiz de Fora Campus, Juiz de Fora 36036-900, Brazil)

  • Hyago Passe Pereira

    (Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora Campus, Juiz de Fora 36036-900, Brazil)

  • Vanessa Romário de Paula

    (Embrapa Dairy Cattle, Brazilian Agricultural Research Corporation, Juiz de Fora 36038-330, Brazil)

  • Marta Fonseca Martins

    (Embrapa Dairy Cattle, Brazilian Agricultural Research Corporation, Juiz de Fora 36038-330, Brazil)

  • Jailton da Costa Carneiro

    (Embrapa Dairy Cattle, Brazilian Agricultural Research Corporation, Juiz de Fora 36038-330, Brazil)

  • Marcelo Henrique Otenio

    (Embrapa Dairy Cattle, Brazilian Agricultural Research Corporation, Juiz de Fora 36038-330, Brazil)

Abstract

This study aimed to analyze the population dynamics of methanogenic archaea in co-digestion systems operated under different concentrations of industrial waste such as ricotta whey and brewery waste sludge in association with bovine manure. It was believed that the association of these residues from the food industry combined with bovine manure can contribute to improve the production of biogas. To identify the archaea, DNA extractions and the sequencing of the 16s rRNA gene were performed from 38 samples of influents and effluents. The results indicated that Methanosaeta and Methanosarcina were predominant in the co-digestion of ricotta cheese whey and that Methanosaeta , Methanocorpusculum , and Methanobrevibacter prevailed in the co-digestion of residual brewery sludge. The three ricotta cheese whey biodigesters demonstrated efficiency in methane production; in contrast, residual sludge of brewery biodigesters only showed efficiency in the system operated with 20% co-substrate.

Suggested Citation

  • Isabela Gomes Barreto da Motta & Larice Aparecida Rezende Santana & Hyago Passe Pereira & Vanessa Romário de Paula & Marta Fonseca Martins & Jailton da Costa Carneiro & Marcelo Henrique Otenio, 2022. "Population Dynamics of Methanogenic Archea in Co-Digestion Systems Operating Different Industrial Residues for Biogas Production," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11536-:d:914967
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11536/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11536/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yıldırım, Elif & Ince, Orhan & Aydin, Sevcan & Ince, Bahar, 2017. "Improvement of biogas potential of anaerobic digesters using rumen fungi," Renewable Energy, Elsevier, vol. 109(C), pages 346-353.
    2. Bipasyana Dhungana & Sunil Prasad Lohani & Michael Marsolek, 2022. "Anaerobic Co-Digestion of Food Waste with Livestock Manure at Ambient Temperature: A Biogas Based Circular Economy and Sustainable Development Goals," Sustainability, MDPI, vol. 14(6), pages 1-16, March.
    3. Lemmer, Andreas & Merkle, Wolfgang & Baer, Katharina & Graf, Frank, 2017. "Effects of high-pressure anaerobic digestion up to 30 bar on pH-value, production kinetics and specific methane yield," Energy, Elsevier, vol. 138(C), pages 659-667.
    4. Moset, Veronica & Fontaine, Doline & Møller, Henrik B., 2017. "Co-digestion of cattle manure and grass harvested with different technologies. Effect on methane yield, digestate composition and energy balance," Energy, Elsevier, vol. 141(C), pages 451-460.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Awasthi, Mukesh Kumar & Sarsaiya, Surendra & Wainaina, Steven & Rajendran, Karthik & Kumar, Sumit & Quan, Wang & Duan, Yumin & Awasthi, Sanjeev Kumar & Chen, Hongyu & Pandey, Ashok & Zhang, Zengqiang , 2019. "A critical review of organic manure biorefinery models toward sustainable circular bioeconomy: Technological challenges, advancements, innovations, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 115-131.
    2. Wojciech Rzeźnik & Ilona Rzeźnik & Paulina Mielcarek-Bocheńska & Mateusz Urbański, 2023. "Air Pollutants Emission during Co-Combustion of Animal Manure and Wood Pellets in 15 kW Boiler," Energies, MDPI, vol. 16(18), pages 1-17, September.
    3. Bücker, Francielle & Marder, Munique & Peiter, Marina Regina & Lehn, Daniel Neutzling & Esquerdo, Vanessa Mendonça & Antonio de Almeida Pinto, Luiz & Konrad, Odorico, 2020. "Fish waste: An efficient alternative to biogas and methane production in an anaerobic mono-digestion system," Renewable Energy, Elsevier, vol. 147(P1), pages 798-805.
    4. Ipsakis, Dimitris & Kraia, Tzouliana & Konsolakis, Michalis & Marnellos, George, 2018. "Remediation of Black Sea ecosystem and pure H2 generation via H2S-H2O co-electrolysis in a proton-conducting membrane cell stack reactor: A feasibility study of the integrated and autonomous approach," Renewable Energy, Elsevier, vol. 125(C), pages 806-818.
    5. Gao, Mingxue & Wang, Danmeng & Wang, Hui & Wang, Xiaojiao & Feng, Yongzhong, 2019. "Biogas potential, utilization and countermeasures in agricultural provinces: A case study of biogas development in Henan Province, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 191-200.
    6. Li, Wanwu & Khalid, Habiba & Zhu, Zhe & Zhang, Ruihong & Liu, Guangqing & Chen, Chang & Thorin, Eva, 2018. "Methane production through anaerobic digestion: Participation and digestion characteristics of cellulose, hemicellulose and lignin," Applied Energy, Elsevier, vol. 226(C), pages 1219-1228.
    7. Marie-Noël Mansour & Thomas Lendormi & Nicolas Louka & Richard G. Maroun & Zeina Hobaika & Jean-Louis Lanoisellé, 2023. "Anaerobic Digestion of Poultry Droppings in Semi-Continuous Mode and Effect of Their Co-Digestion with Physico-Chemical Sludge on Methane Yield," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    8. Edyta Wrzesińska-Jędrusiak & Michał Czarnecki & Paweł Kazimierski & Paulina Bandrów & Szymon Szufa, 2023. "The Circular Economy in the Management of Waste from Leather Processing," Energies, MDPI, vol. 16(1), pages 1-16, January.
    9. Sica, Daniela & Esposito, Benedetta & Supino, Stefania & Malandrino, Ornella & Sessa, Maria Rosaria, 2023. "Biogas-based systems: An opportunity towards a post-fossil and circular economy perspective in Italy," Energy Policy, Elsevier, vol. 182(C).
    10. Hasan Suphi Altan & Derin Orhon & Seval Sozen, 2022. "Energy Recovery Potential of Livestock Waste with Thermal and Biological Technologies: Analysis on Cattle, Sheep, Goat and Chicken Manure," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 39-52, March.
    11. Zhou, Jialiang & Zhang, Yuanhui & Khoshnevisan, Benyamin & Duan, Na, 2021. "Meta-analysis of anaerobic co-digestion of livestock manure in last decade: Identification of synergistic effect and optimization synergy range," Applied Energy, Elsevier, vol. 282(PA).
    12. Kyriaki Trouli & Spyros Dokianakis & Evangelia Vasilaki & Nikos Katsarakis, 2023. "Treatment of Agricultural Waste Using a Combination of Anaerobic, Aerobic, and Adsorption Processes," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    13. Khoshnevisan, Benyamin & Duan, Na & Tsapekos, Panagiotis & Awasthi, Mukesh Kumar & Liu, Zhidan & Mohammadi, Ali & Angelidaki, Irini & Tsang, Daniel CW. & Zhang, Zengqiang & Pan, Junting & Ma, Lin & Ag, 2021. "A critical review on livestock manure biorefinery technologies: Sustainability, challenges, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Mariana Ferdeș & Mirela Nicoleta Dincă & Georgiana Moiceanu & Bianca Ștefania Zăbavă & Gigel Paraschiv, 2020. "Microorganisms and Enzymes Used in the Biological Pretreatment of the Substrate to Enhance Biogas Production: A Review," Sustainability, MDPI, vol. 12(17), pages 1-26, September.
    15. Malhotra, Milan & Aboudi, Kaoutar & Pisharody, Lakshmi & Singh, Ayush & Banu, J. Rajesh & Bhatia, Shashi Kant & Varjani, Sunita & Kumar, Sunil & González-Fernández, Cristina & Kumar, Sumant & Singh, R, 2022. "Biorefinery of anaerobic digestate in a circular bioeconomy: Opportunities, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    16. Li, Yu & Achinas, Spyridon & Zhao, Jing & Geurkink, Bert & Krooneman, Janneke & Willem Euverink, Gerrit Jan, 2020. "Co-digestion of cow and sheep manure: Performance evaluation and relative microbial activity," Renewable Energy, Elsevier, vol. 153(C), pages 553-563.
    17. Heinsoo, Katrin & Tali, Kadri, 2019. "Can various bioenergy technologies add value to each other?," Energy, Elsevier, vol. 175(C), pages 259-264.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11536-:d:914967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.