IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p11031-d906280.html
   My bibliography  Save this article

Spatial-Temporal Evolution and Influencing Mechanism of Traffic Dominance in Qinghai-Tibet Plateau

Author

Listed:
  • Dongchuan Wang

    (School of Geology and Geomatics, Tianjin Chengjian University, Tianjin 300384, China)

  • Kangjian Wang

    (School of Geology and Geomatics, Tianjin Chengjian University, Tianjin 300384, China)

  • Zhiheng Wang

    (School of Geology and Geomatics, Tianjin Chengjian University, Tianjin 300384, China)

  • Hongkui Fan

    (School of Geology and Geomatics, Tianjin Chengjian University, Tianjin 300384, China)

  • Hua Chai

    (School of Geology and Geomatics, Tianjin Chengjian University, Tianjin 300384, China)

  • Hongyi Wang

    (School of Geology and Geomatics, Tianjin Chengjian University, Tianjin 300384, China)

  • Hui Long

    (School of Geology and Geomatics, Tianjin Chengjian University, Tianjin 300384, China)

  • Jianshe Gao

    (School of Geology and Geomatics, Tianjin Chengjian University, Tianjin 300384, China)

  • Jiacheng Xu

    (School of Geology and Geomatics, Tianjin Chengjian University, Tianjin 300384, China)

Abstract

Transportation is an important resource for the sustainable development of the Qinghai-Tibet Plateau. It is of great practical significance to evaluate and study the law and mechanism of spatial and temporal differentiation of traffic dominance degree. Based on the methods of the Origin-Destination cost matrix, least squares method, and geographically weighted regression, this paper establishes a traffic dominance evaluation system at the county scale and discusses the spatial pattern and influence of traffic dominance in the Qinghai-Tibet Plateau from 2015 to 2019. The results show that: (1) The overall traffic construction of the Qinghai-Tibet Plateau has been accelerated, and the traffic accessibility between counties has been significantly enhanced; (2) The traffic dominance of the Qinghai-Tibet Plateau is significantly different from east to west, and the central area, with “Xining-Lhasa” as the axis, expands to the outer circle with an irregularly decreasing spatial pattern; and (3) The effect of rapid urbanization development and population carrying capacity enhancement on the traffic dominance of the Qinghai-Tibet Plateau has gradually increased, and the effect of elevation has been weakening from 2015 to 2019.

Suggested Citation

  • Dongchuan Wang & Kangjian Wang & Zhiheng Wang & Hongkui Fan & Hua Chai & Hongyi Wang & Hui Long & Jianshe Gao & Jiacheng Xu, 2022. "Spatial-Temporal Evolution and Influencing Mechanism of Traffic Dominance in Qinghai-Tibet Plateau," Sustainability, MDPI, vol. 14(17), pages 1-19, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:11031-:d:906280
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/11031/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/11031/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jing Huang & Dongqian Xue, 2019. "Study on Temporal and Spatial Variation Characteristics and Influencing Factors of Land Use Efficiency in Xi’an, China," Sustainability, MDPI, vol. 11(23), pages 1-16, November.
    2. Jia, Shanming & Zhou, Chunyu & Qin, Chenglin, 2017. "No difference in effect of high-speed rail on regional economic growth based on match effect perspective?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 144-157.
    3. Zhang, Ning & Wei, Xiao, 2015. "Dynamic total factor carbon emissions performance changes in the Chinese transportation industry," Applied Energy, Elsevier, vol. 146(C), pages 409-420.
    4. Jane Qiu, 2008. "China: The third pole," Nature, Nature, vol. 454(7203), pages 393-396, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lulin Liu & Renna Du & Qian Mao & Gaoru Zhu & Hong Zhong, 2025. "Coupling Relationship Between Transportation Corridors and Ecosystem Service Value Realization in Giant Panda National Park," Land, MDPI, vol. 14(7), pages 1-24, July.
    2. Dou Wenkang & Zhang Jie, 2024. "Spatial Pattern and Driving Mechanism of Urban Taxi Fares in China," SAGE Open, , vol. 14(2), pages 21582440241, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruijing Zheng & Yu Cheng & Haimeng Liu & Wei Chen & Xiaodong Chen & Yaping Wang, 2022. "The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    2. Fan, Xiaomin & Xu, Yingzhi, 2023. "Does high-speed railway promote urban innovation? Evidence from China," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    3. Yang, Zhiwei & Li, Can & Jiao, Jingjuan & Liu, Wei & Zhang, Fangni, 2020. "On the joint impact of high-speed rail and megalopolis policy on regional economic growth in China," Transport Policy, Elsevier, vol. 99(C), pages 20-30.
    4. Xiao, Huijuan & Wang, Daoping & Qi, Yu & Shao, Shuai & Zhou, Ya & Shan, Yuli, 2021. "The governance-production nexus of eco-efficiency in Chinese resource-based cities: A two-stage network DEA approach," Energy Economics, Elsevier, vol. 101(C).
    5. Liu, Le & Jia, Shanming & Liu, Pengzhen, 2025. "The impact of intercity multi-transportation networks on enterprises' total factor productivity," Transport Policy, Elsevier, vol. 162(C), pages 477-492.
    6. Zhao, Shikuan & Cao, Yuequn & Hunjra, Ahmed Imran & Tan, Yan, 2023. "How does environmentally induced R&D affect carbon productivity? A government support perspective," International Review of Economics & Finance, Elsevier, vol. 88(C), pages 942-961.
    7. Di Matteo, Dante & Mariotti, Ilaria & Rossi, Federica, 2023. "Transport infrastructure and economic performance: An evaluation of the Milan-Bologna high-speed rail corridor," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    8. Dongqing Han & Zhengxu Cao, 2024. "Evaluation and Influential Factors of Urban Land Use Efficiency in Yangtze River Economic Belt," Land, MDPI, vol. 13(5), pages 1-17, May.
    9. Muhammad Arfan & Jewell Lund & Daniyal Hassan & Maaz Saleem & Aftab Ahmad, 2019. "Assessment of Spatial and Temporal Flow Variability of the Indus River," Resources, MDPI, vol. 8(2), pages 1-17, May.
    10. Hao Zhang & Jie He & Xiaomeng Shi & Qiong Hong & Jie Bao & Shuqi Xue, 2020. "Technology Characteristics, Stakeholder Pressure, Social Influence, and Green Innovation: Empirical Evidence from Chinese Express Companies," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
    11. (Ato) Xu, Wangtu & Zhou, Jiangping & Yang, Linchuan & Li, Ling, 2018. "The implications of high-speed rail for Chinese cities: Connectivity and accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 308-326.
    12. Li, Ke & Lin, Boqiang, 2015. "Measuring green productivity growth of Chinese industrial sectors during 1998–2011," China Economic Review, Elsevier, vol. 36(C), pages 279-295.
    13. Cheng, Zhonghua & Li, Lianshui & Liu, Jun & Zhang, Huiming, 2018. "Total-factor carbon emission efficiency of China's provincial industrial sector and its dynamic evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 330-339.
    14. Li, Jing & Yu, Qian & Ma, Ding, 2024. "Does China's high-speed rail network promote inter-city technology transfer? ——A multilevel network analysis based on the electronic information industry," Transport Policy, Elsevier, vol. 145(C), pages 11-24.
    15. Wang, Feng & Wei, Xianjin & Liu, Juan & He, Lingyun & Gao, Mengnan, 2019. "Impact of high-speed rail on population mobility and urbanisation: A case study on Yangtze River Delta urban agglomeration, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 99-114.
    16. Chen, Fanglin & Hao, Xinyue & Chen, Zhongfei, 2021. "Can high-speed rail improve health and alleviate health inequality? Evidence from China," Transport Policy, Elsevier, vol. 114(C), pages 266-279.
    17. Mahmoudi, Reza & Emrouznejad, Ali & Shetab-Boushehri, Seyyed-Nader & Hejazi, Seyed Reza, 2020. "The origins, development and future directions of data envelopment analysis approach in transportation systems," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    18. Cohen-Blankshtain, Galit, 2021. "On another track: Differing views of experts and politicians on rail investments in peripheral localities," Journal of Transport Geography, Elsevier, vol. 95(C).
    19. Qianhan Wu & Kai Liu & Chunqiao Song & Jida Wang & Linghong Ke & Ronghua Ma & Wensong Zhang & Hang Pan & Xinyuan Deng, 2018. "Remote Sensing Detection of Vegetation and Landform Damages by Coal Mining on the Tibetan Plateau," Sustainability, MDPI, vol. 10(11), pages 1-17, October.
    20. Zha, Donglan & Yang, Guanglei & Wang, Qunwei, 2019. "Investigating the driving factors of regional CO2 emissions in China using the IDA-PDA-MMI method," Energy Economics, Elsevier, vol. 84(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:11031-:d:906280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.