IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p10962-d904986.html
   My bibliography  Save this article

Sustainable Production of Biodiesel from Novel and Non-Edible Ailanthus altissima (Mill.) Seed Oil from Green and Recyclable Potassium Hydroxide Activated Ailanthus Cake and Cadmium Sulfide Catalyst

Author

Listed:
  • Munazza Jabeen

    (Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan)

  • Mamoona Munir

    (Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
    Department of Botany, Rawalpindi Women University, Rawalpindi 46300, Pakistan)

  • Muhammad Mujtaba Abbas

    (Department of Mechanical Engineering, University of Engineering and Technology, New Campus Lahore, Lahore 54890, Pakistan)

  • Mushtaq Ahmad

    (Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan)

  • Amir Waseem

    (Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan)

  • Muhammad Saeed

    (Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
    School of Chemistry, University of the Punjab, Lahore 54590, Pakistan)

  • Md Abul Kalam

    (School of Civil and Environmental Engineering, FEIT, University of Technology Sydney, Sydney, NSW 2007, Australia)

  • Muhammad Zafar

    (Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan)

  • Shazia Sultana

    (Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan)

  • Abdullah Mohamed

    (Research Centre, Future University in Egypt, New Cairo 11835, Egypt)

  • Bisha Chaudhry

    (Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan)

Abstract

Heterogeneous catalyst prepared from Ailanthus altissima oil cake along with cadmium sulphide catalyst proved to be an efficient, cost-effective and sustainable source of biodiesel synthesis from Ailanthus altissima (Mill.) seed oil. Ailanthus altissima (Mill.) is a non-edible wild plant having significant oil content of 40%, being an ideal low cost and sustainable source of biodiesel production. After extraction of oil from the seeds, the remaining Ailanthus cake was treated through different techniques to be used as a novel heterogeneous catalyst. Free fatty acid content of the seeds was measured as 0.7%, which is very reasonable for effective trans-esterification process. The potassium hydroxide (KOH)-activated Ailanthus cake (KAC), calcined Ailanthus cake (CAC) and cadmium sulphide nanoparticles (CdS) were characterised with different techniques such as SEM at different magnifications, XRD and EDX. These catalysts were effectively utilised for biodiesel production owing to promising reusability, cost-effective and eco-friendly behaviour. For trans-esterification of Ailanthus altissima oil (AAO), the operating conditions on which maximum biodiesel yield obtained were 3:1 methanol to oil molar ratio, 0.5 wt.% catalyst concentration, 90 min reaction time, 60 °C and 600 rpm. The fuel properties of biodiesel obtained from Ailanthus altissima (Mill.) were also determined and analysed in detail. These properties, such as viscosity, density, pour point and cloud point, fall within the limits set by international standards of biodiesel.

Suggested Citation

  • Munazza Jabeen & Mamoona Munir & Muhammad Mujtaba Abbas & Mushtaq Ahmad & Amir Waseem & Muhammad Saeed & Md Abul Kalam & Muhammad Zafar & Shazia Sultana & Abdullah Mohamed & Bisha Chaudhry, 2022. "Sustainable Production of Biodiesel from Novel and Non-Edible Ailanthus altissima (Mill.) Seed Oil from Green and Recyclable Potassium Hydroxide Activated Ailanthus Cake and Cadmium Sulfide Catalyst," Sustainability, MDPI, vol. 14(17), pages 1-12, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10962-:d:904986
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/10962/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/10962/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anwar, Farooq & Rashid, Umer & Ashraf, Muhammad & Nadeem, Muhammad, 2010. "Okra (Hibiscus esculentus) seed oil for biodiesel production," Applied Energy, Elsevier, vol. 87(3), pages 779-785, March.
    2. Satyanarayana, M. & Muraleedharan, C., 2011. "A comparative study of vegetable oil methyl esters (biodiesels)," Energy, Elsevier, vol. 36(4), pages 2129-2137.
    3. Munir, Mamoona & Ahmad, Mushtaq & Saeed, Muhammad & Waseem, Amir & Rehan, Mohammad & Nizami, Abdul-Sattar & Zafar, Muhammad & Arshad, Muhammad & Sultana, Shazia, 2019. "Sustainable production of bioenergy from novel non-edible seed oil (Prunus cerasoides) using bimetallic impregnated montmorillonite clay catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 321-332.
    4. Rozina, & Asif, Saira & Ahmad, Mushtaq & Zafar, Muhammad & Ali, Nsir, 2017. "Prospects and potential of fatty acid methyl esters of some non-edible seed oils for use as biodiesel in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 687-702.
    5. Arjun B. Chhetri & K. Chris Watts & M. Rafiqul Islam, 2008. "Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production," Energies, MDPI, vol. 1(1), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rozina, & Ahmad, Mushtaq & Zafar, Muhammad & Ali, Nasir & Lu, Houfang, 2017. "Biodiesel synthesis from Saussurea heteromalla (D.Don) Hand-Mazz integrating ethanol production using biorefinery approach," Energy, Elsevier, vol. 141(C), pages 1810-1818.
    2. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    3. Balat, Mustafa & Balat, Havva, 2010. "Progress in biodiesel processing," Applied Energy, Elsevier, vol. 87(6), pages 1815-1835, June.
    4. Sanjid, A. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Abedin, M.J. & Palash, S.M., 2013. "Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 664-682.
    5. Atabani, A.E. & Silitonga, A.S. & Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Fayaz, H., 2013. "Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 211-245.
    6. Moosavi, Seyed Amir & Aghaalikhani, Majid & Ghobadian, Barat & Fayyazi, Ebrahim, 2018. "Okra: A potential future bioenergy crop in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 517-524.
    7. Thanh Xuan NguyenThi & Jean-Patrick Bazile & David Bessières, 2018. "Density Measurements of Waste Cooking Oil Biodiesel and Diesel Blends Over Extended Pressure and Temperature Ranges," Energies, MDPI, vol. 11(5), pages 1-14, May.
    8. Li, Zhuoxue & Yang, Depo & Huang, Miaoling & Hu, Xinjun & Shen, Jiangang & Zhao, Zhimin & Chen, Jianping, 2012. "Chrysomya megacephala (Fabricius) larvae: A new biodiesel resource," Applied Energy, Elsevier, vol. 94(C), pages 349-354.
    9. Peng-Lim, Boey & Ganesan, Shangeetha & Maniam, Gaanty Pragas & Khairuddean, Melati, 2012. "Sequential conversion of high free fatty acid oils into biodiesel using a new catalyst system," Energy, Elsevier, vol. 46(1), pages 132-139.
    10. Zahedi, Ali Reza & Mirnezami, Seyed Abolfazl, 2020. "Experimental analysis of biomass to biodiesel conversion using a novel renewable combined cycle system," Renewable Energy, Elsevier, vol. 162(C), pages 1177-1194.
    11. Ahmad Abbaszadeh-Mayvan & Barat Ghobadian & Gholamhassan Najafi & Talal Yusaf, 2018. "Intensification of Continuous Biodiesel Production from Waste Cooking Oils Using Shockwave Power Reactor: Process Evaluation and Optimization through Response Surface Methodology (RSM)," Energies, MDPI, vol. 11(10), pages 1-13, October.
    12. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    13. Erika Carnevale & Giovanni Molari & Matteo Vittuari, 2017. "Used Cooking Oils in the Biogas Chain: A Technical and Economic Assessment," Energies, MDPI, vol. 10(2), pages 1-13, February.
    14. Mandolesi de Araújo, Carlos Daniel & de Andrade, Claudia Cristina & de Souza e Silva, Erika & Dupas, Francisco Antonio, 2013. "Biodiesel production from used cooking oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 445-452.
    15. Munir, Mamoona & Ahmad, Mushtaq & Saeed, Muhammad & Waseem, Amir & Nizami, Abdul-Sattar & Sultana, Shazia & Zafar, Muhammad & Rehan, Mohammad & Srinivasan, Gokul Raghavendra & Ali, Arshid Mahmood & Al, 2021. "Biodiesel production from novel non-edible caper (Capparis spinosa L.) seeds oil employing Cu–Ni doped ZrO2 catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    16. Eugenia Guadalupe Ortiz Lechuga & Mauro Rodríguez Zúñiga & Katiushka Arévalo Niño, 2020. "Efficiency Evaluation on the Influence of Washing Methods for Biodiesel Produced from High Free Fatty Acid Waste Vegetable Oils through Selected Quality Parameters," Energies, MDPI, vol. 13(23), pages 1-14, November.
    17. Lian, Shuang & Li, Huijuan & Tang, Jinqiang & Tong, Dongmei & Hu, Changwei, 2012. "Integration of extraction and transesterification of lipid from jatropha seeds for the production of biodiesel," Applied Energy, Elsevier, vol. 98(C), pages 540-547.
    18. Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
    19. Atapour, Mehdi & Kariminia, Hamid-Reza, 2011. "Characterization and transesterification of Iranian bitter almond oil for biodiesel production," Applied Energy, Elsevier, vol. 88(7), pages 2377-2381, July.
    20. Long, Feng & Liu, Weiguo & Jiang, Xia & Zhai, Qiaolong & Cao, Xincheng & Jiang, Jianchun & Xu, Junming, 2021. "State-of-the-art technologies for biofuel production from triglycerides: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10962-:d:904986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.