IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i16p10173-d889669.html
   My bibliography  Save this article

Decarbonization and Transition to the Post-Lignite Era: Analysis for a Sustainable Transition in the Region of Western Macedonia

Author

Listed:
  • Apostolos Tranoulidis

    (Department of Chemical Engineering, University of Western Macedonia, 50100 Kozani, Greece)

  • Rafaella-Eleni P. Sotiropoulou

    (Department of Mechanical Engineering, University of Western Macedonia, 50100 Kozani, Greece)

  • Kostas Bithas

    (Department of Economic and Regional Development, Institute of Urban Environment and Human Resources, Panteion University of Social and Political Sciences, 17676 Athens, Greece)

  • Efthimios Tagaris

    (Department of Chemical Engineering, University of Western Macedonia, 50100 Kozani, Greece)

Abstract

For many decades, the Region of Western Macedonia has been Greece’s energy hub, contributing significantly to electricity supply and national growth with the exploitation of lignite deposits for power generation. Lignite, though, has been banned from EU energy source policies towards achieving CO 2 emissions reduction, with profound implications on the economy of the region. Despite the importance of this energy transition, a combinatorial analysis for the area in the coal phase-out regime is missing. Therefore, a combined analysis is performed here, and more specifically, a strengths, weaknesses, opportunities, and threats (SWOT) analysis in all the affected sectors, in combination with the examination of the degree of satisfaction with the EU’s energy priorities. The results of the study show that the Region of Western Macedonia has profound strengths and offers many new opportunities during its transition to a new production model. On the other hand, it has high unemployment rates and low rates of competitiveness and innovation. The main threat is the Region’s desertification due to the inability to find sufficient jobs. Considering the Energy Union’s priorities, the Region of Western Macedonia satisfactorily follows the priorities of Europe in its transition to the new production model, with plenty of room for improvement. The analysis performed allows for a just transition strategic planning to minimize social, economic and energy challenges while maximizing sustainable power generation and has implications for all relevant stakeholders, contributing to the implementation of Energy Union governance and climate actions.

Suggested Citation

  • Apostolos Tranoulidis & Rafaella-Eleni P. Sotiropoulou & Kostas Bithas & Efthimios Tagaris, 2022. "Decarbonization and Transition to the Post-Lignite Era: Analysis for a Sustainable Transition in the Region of Western Macedonia," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10173-:d:889669
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/16/10173/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/16/10173/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karoliina Isoaho & Jochen Markard, 2020. "The Politics of Technology Decline: Discursive Struggles over Coal Phase‐Out in the UK," Review of Policy Research, Policy Studies Organization, vol. 37(3), pages 342-368, May.
    2. Kamran, Muhammad & Fazal, Muhammad Rayyan & Mudassar, Muhammad, 2020. "Towards empowerment of the renewable energy sector in Pakistan for sustainable energy evolution: SWOT analysis," Renewable Energy, Elsevier, vol. 146(C), pages 543-558.
    3. Christiaensen, Luc & Ferré, Céline, 2020. "Just Coal Transition in Western Macedonia, Greece-Insights from the Labor Market," Jobs Group Papers, Notes, and Guides 32547274, The World Bank.
    4. Nyholm, Emil & Odenberger, Mikael & Johnsson, Filip, 2017. "An economic assessment of distributed solar PV generation in Sweden from a consumer perspective – The impact of demand response," Renewable Energy, Elsevier, vol. 108(C), pages 169-178.
    5. Terrados, J. & Almonacid, G. & Hontoria, L., 2007. "Regional energy planning through SWOT analysis and strategic planning tools.: Impact on renewables development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1275-1287, August.
    6. Wang, Qiang & Li, Shuyu & Zhang, Min & Li, Rongrong, 2022. "Impact of COVID-19 pandemic on oil consumption in the United States: A new estimation approach," Energy, Elsevier, vol. 239(PC).
    7. Vlassopoulos, Chloé, 2020. "Persistent lignite dependency: The Greek energy sector under pressure," Energy Policy, Elsevier, vol. 147(C).
    8. Zorica Srdjevic & Ratko Bajcetic & Bojan Srdjevic, 2012. "Identifying the Criteria Set for Multicriteria Decision Making Based on SWOT/PESTLE Analysis: A Case Study of Reconstructing A Water Intake Structure," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3379-3393, September.
    9. Marek Angowski & Tomasz Kijek & Marcin Lipowski & Ilona Bondos, 2021. "Factors Affecting the Adoption of Photovoltaic Systems in Rural Areas of Poland," Energies, MDPI, vol. 14(17), pages 1-14, August.
    10. Matteo Fermeglia & Paolo Bevilacqua & Claudia Cafaro & Paolo Ceci & Antonio Fardelli, 2020. "Legal Pathways to Coal Phase-Out in Italy in 2025," Energies, MDPI, vol. 13(21), pages 1-22, October.
    11. Schumacher, Kim, 2019. "Approval procedures for large-scale renewable energy installations: Comparison of national legal frameworks in Japan, New Zealand, the EU and the US," Energy Policy, Elsevier, vol. 129(C), pages 139-152.
    12. Alipour, M. & Salim, H. & Stewart, Rodney A. & Sahin, Oz, 2020. "Predictors, taxonomy of predictors, and correlations of predictors with the decision behaviour of residential solar photovoltaics adoption: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    13. B. Igliński & M. Skrzatek & W. Kujawski & M. Cichosz & R. Buczkowski, 2022. "SWOT analysis of renewable energy sector in Mazowieckie Voivodeship (Poland): current progress, prospects and policy implications," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 77-111, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christina-Ioanna Papadopoulou & Efstratios Loizou & Fotios Chatzitheodoridis & Anastasios Michailidis & Christos Karelakis & Yannis Fallas & Aikaterini Paltaki, 2023. "What Makes Farmers Aware in Adopting Circular Bioeconomy Practices? Evidence from a Greek Rural Region," Land, MDPI, vol. 12(4), pages 1-17, April.
    2. Giannis Papadopoulos & Evangelos I. Tolis & Giorgos Panaras, 2023. "Combined Investigation of Indoor Environmental Conditions and Energy Performance of an Aquatic Center," Sustainability, MDPI, vol. 15(2), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Solomon E. Uhunamure & Karabo Shale, 2021. "A SWOT Analysis Approach for a Sustainable Transition to Renewable Energy in South Africa," Sustainability, MDPI, vol. 13(7), pages 1-18, April.
    2. Kaytez, Fazıl, 2022. "Evaluation of priority strategies for the expansion of installed wind power capacity in Turkey using a fuzzy analytic network process analysis," Renewable Energy, Elsevier, vol. 196(C), pages 1281-1293.
    3. Sebastian Goers & Fiona Rumohr & Sebastian Fendt & Louis Gosselin & Gilberto M. Jannuzzi & Rodolfo D. M. Gomes & Stella M. S. Sousa & Reshmi Wolvers, 2020. "The Role of Renewable Energy in Regional Energy Transitions: An Aggregate Qualitative Analysis for the Partner Regions Bavaria, Georgia, Québec, São Paulo, Shandong, Upper Austria, and Western Cape," Sustainability, MDPI, vol. 13(1), pages 1-30, December.
    4. Marek Angowski & Tomasz Kijek & Marcin Lipowski & Ilona Bondos, 2021. "Factors Affecting the Adoption of Photovoltaic Systems in Rural Areas of Poland," Energies, MDPI, vol. 14(17), pages 1-14, August.
    5. Kamran, Muhammad & Fazal, Muhammad Rayyan & Mudassar, Muhammad, 2020. "Towards empowerment of the renewable energy sector in Pakistan for sustainable energy evolution: SWOT analysis," Renewable Energy, Elsevier, vol. 146(C), pages 543-558.
    6. Aikaterini Papapostolou & Charikleia Karakosta & Georgios Apostolidis & Haris Doukas, 2020. "An AHP-SWOT-Fuzzy TOPSIS Approach for Achieving a Cross-Border RES Cooperation," Sustainability, MDPI, vol. 12(7), pages 1-28, April.
    7. Yanguas Parra, Paola & Hauenstein, Christian & Oei, Pao-Yu, 2021. "The death valley of coal – Modelling COVID-19 recovery scenarios for steam coal markets," Applied Energy, Elsevier, vol. 288(C).
    8. Formolli, M. & Kleiven, T. & Lobaccaro, G., 2023. "Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    9. Min Su & Qiang Wang & Rongrong Li, 2021. "How to Dispose of Medical Waste Caused by COVID-19? A Case Study of China," IJERPH, MDPI, vol. 18(22), pages 1-18, November.
    10. Di Leo, Senatro & Salvia, Monica, 2017. "Local strategies and action plans towards resource efficiency in South East Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 286-305.
    11. Peng, Benhong & Zhao, Yinyin & Elahi, Ehsan & Wan, Anxia, 2023. "Can third-party market cooperation solve the dilemma of emissions reduction? A case study of energy investment project conflict analysis in the context of carbon neutrality," Energy, Elsevier, vol. 264(C).
    12. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    13. Lemay, Amélie C. & Wagner, Sigurd & Rand, Barry P., 2023. "Current status and future potential of rooftop solar adoption in the United States," Energy Policy, Elsevier, vol. 177(C).
    14. Mara Hammerle & Paul J. Burke, 2022. "Solar PV and energy poverty in Australia's residential sector," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(4), pages 822-841, October.
    15. Sara Ghaboulian Zare & Reza Hafezi & Mohammad Alipour & Reza Parsaei Tabar & Rodney A. Stewart, 2021. "Residential Solar Water Heater Adoption Behaviour: A Review of Economic and Technical Predictors and Their Correlation with the Adoption Decision," Energies, MDPI, vol. 14(20), pages 1-26, October.
    16. Christina G. Siontorou, 2023. "Fair Development Transition of Lignite Areas: Key Challenges and Sustainability Prospects," Sustainability, MDPI, vol. 15(16), pages 1-14, August.
    17. Gawlik, Bernd Manfred & Sobiecka, Elzbieta & Vaccaro, Stefano & Ciceri, Giovanni, 2007. "Quality management organisation, validation of standards, developments and inquiries for solid-recovered fuels--An overview on the QUOVADIS-Project," Energy Policy, Elsevier, vol. 35(12), pages 6293-6298, December.
    18. Lu, Qing & Yu, Hao & Zhao, Kangli & Leng, Yajun & Hou, Jianchao & Xie, Pinjie, 2019. "Residential demand response considering distributed PV consumption: A model based on China's PV policy," Energy, Elsevier, vol. 172(C), pages 443-456.
    19. Maria A. Franco & Stefan N. Groesser, 2021. "A Systematic Literature Review of the Solar Photovoltaic Value Chain for a Circular Economy," Sustainability, MDPI, vol. 13(17), pages 1-35, August.
    20. Kody T. Ponds & Ali Arefi & Ali Sayigh & Gerard Ledwich, 2018. "Aggregator of Demand Response for Renewable Integration and Customer Engagement: Strengths, Weaknesses, Opportunities, and Threats," Energies, MDPI, vol. 11(9), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10173-:d:889669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.