IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9118-d871227.html
   My bibliography  Save this article

Economic-Environmental-Social Benefits Assessment of Wind Power Hydrogen Production Project Based on Cloud-MULTIMOORA Approach

Author

Listed:
  • Han Chu

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China)

  • Jiaming He

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China)

  • Yisheng Yang

    (China United Gas Turbine Technology Corporation, Shanghai 200135, China)

  • Yong Huang

    (China National Nuclear Corporation, Beijing 100822, China)

  • Shiman Wang

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China)

  • Yunna Wu

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China)

Abstract

This study explores methods to assess the benefits of WPHPP from three aspects: economic, environmental, and social. Decarbonization has become an inevitable trend in the electricity generation industry. Storage integrated renewable energy generation plants have enhanced the stability of the output of renewable energy to a certain degree. Wind power hydrogen production projects (WPHPPs) could be a promising solution to the Chinese government’s peak carbon dioxide emissions goal. To achieve this goal, an evaluation system consisting of 12 main benefits factors is established. Then, an assessment approach based on Cloud-MULTIMOORA is proposed to select the best alternative. Specifically, HELTS-Cloud model is used to describe the information given by decision-makers and experts. Then, the SWARA and CRITIC methods are applied to obtain the subjective and objective weights. Additionally, a constrained optimization model is introduced to obtain the comprehensive weights. Finally, the MULTIMOORA-EDA method is used to obtain the final ranking of alternatives. Additionally, a case study is made to certify the usability and feasibility of the proposed method. This paper provides a method for assessing the benefits of WPHPP and promotes the application of this new kind of green energy project in the future.

Suggested Citation

  • Han Chu & Jiaming He & Yisheng Yang & Yong Huang & Shiman Wang & Yunna Wu, 2022. "Economic-Environmental-Social Benefits Assessment of Wind Power Hydrogen Production Project Based on Cloud-MULTIMOORA Approach," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9118-:d:871227
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9118/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9118/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arslan, Oguz, 2010. "Technoeconomic analysis of electricity generation from wind energy in Kutahya, Turkey," Energy, Elsevier, vol. 35(1), pages 120-131.
    2. Timmerberg, Sebastian & Kaltschmitt, Martin, 2019. "Hydrogen from renewables: Supply from North Africa to Central Europe as blend in existing pipelines – Potentials and costs," Applied Energy, Elsevier, vol. 237(C), pages 795-809.
    3. Apostolou, Dimitrios & Enevoldsen, Peter, 2019. "The past, present and potential of hydrogen as a multifunctional storage application for wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 917-929.
    4. Asante, Dennis & He, Zheng & Adjei, Nana Osae & Asante, Bismark, 2020. "Exploring the barriers to renewable energy adoption utilising MULTIMOORA- EDAS method," Energy Policy, Elsevier, vol. 142(C).
    5. Wu, Yunna & Xu, Chuanbo & Zhang, Ting, 2018. "Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: A case in China," Energy, Elsevier, vol. 147(C), pages 1227-1239.
    6. Heras, Jorge & Martín, Mariano, 2020. "Social issues in the energy transition: Effect on the design of the new power system," Applied Energy, Elsevier, vol. 278(C).
    7. Nematollahi, Omid & Alamdari, Pouria & Jahangiri, Mehdi & Sedaghat, Ahmad & Alemrajabi, Ali Akbar, 2019. "A techno-economical assessment of solar/wind resources and hydrogen production: A case study with GIS maps," Energy, Elsevier, vol. 175(C), pages 914-930.
    8. Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).
    9. Ali, Fahad & Ahmar, Muhammad & Jiang, Yuexiang & AlAhmad, Mohammad, 2021. "A techno-economic assessment of hybrid energy systems in rural Pakistan," Energy, Elsevier, vol. 215(PA).
    10. Ortega, Margarita & Río, Pablo del & Ruiz, Pablo & Nijs, Wouter & Politis, Savvas, 2020. "Analysing the influence of trade, technology learning and policy on the employment prospects of wind and solar energy deployment: The EU case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    11. Nordin, Nur Dalilah & Rahman, Hasimah Abdul, 2019. "Comparison of optimum design, sizing, and economic analysis of standalone photovoltaic/battery without and with hydrogen production systems," Renewable Energy, Elsevier, vol. 141(C), pages 107-123.
    12. Xu, Chuanbo & Wu, Yunna & Dai, Shuyu, 2020. "What are the critical barriers to the development of hydrogen refueling stations in China? A modified fuzzy DEMATEL approach," Energy Policy, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezaei, Mostafa & Naghdi-Khozani, Nafiseh & Jafari, Niloofar, 2020. "Wind energy utilization for hydrogen production in an underdeveloped country: An economic investigation," Renewable Energy, Elsevier, vol. 147(P1), pages 1044-1057.
    2. Chien, FengSheng & Ngo, Quang-Thanh & Hsu, Ching-Chi & Chau, Ka Yin & Mohsin, Muhammad, 2021. "Assessing the capacity of renewable power production for green energy system: a way forward towards zero carbon electrification," MPRA Paper 109667, University Library of Munich, Germany.
    3. Ilbahar, Esra & Kahraman, Cengiz & Cebi, Selcuk, 2022. "Risk assessment of renewable energy investments: A modified failure mode and effect analysis based on prospect theory and intuitionistic fuzzy AHP," Energy, Elsevier, vol. 239(PA).
    4. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    5. Wang, Yaxian & Zhao, Zhenli & Baležentis, Tomas, 2023. "Benefit distribution in shared private charging pile projects based on modified Shapley value," Energy, Elsevier, vol. 263(PB).
    6. Rehman, Obaid ur & Ali, Yousaf & Sabir, Muhammad, 2022. "Risk assessment and mitigation for electric power sectors: A developing country's perspective," International Journal of Critical Infrastructure Protection, Elsevier, vol. 36(C).
    7. Elkadeem, M.R. & Younes, Ali & Sharshir, Swellam W. & Campana, Pietro Elia & Wang, Shaorong, 2021. "Sustainable siting and design optimization of hybrid renewable energy system: A geospatial multi-criteria analysis," Applied Energy, Elsevier, vol. 295(C).
    8. Rahadian Dadan & Firli Anisah & Dinçer Hasan & Yüksel Serhat & Hacıoğlu Ümit & Aksoy Tamer & Gherghina Ştefan Cristian, 2023. "An Evaluation of E7 Countries’ Sustainable Energy Investments: A Decision-Making Approach with Spherical Fuzzy Sets," Economics - The Open-Access, Open-Assessment Journal, De Gruyter, vol. 17(1), pages 1-21, January.
    9. Qiu, Rui & Liao, Qi & Klemeš, Jiří Jaromír & Liang, Yongtu & Guo, Zhichao & Chen, Jinyu & Zhang, Haoran, 2022. "Roadmap to urban energy internet with wind electricity-natural gas nexus: Economic and environmental analysis," Energy, Elsevier, vol. 245(C).
    10. Mishra, Arunodaya Raj & Mardani, Abbas & Rani, Pratibha & Kamyab, Hesam & Alrasheedi, Melfi, 2021. "A new intuitionistic fuzzy combinative distance-based assessment framework to assess low-carbon sustainable suppliers in the maritime sector," Energy, Elsevier, vol. 237(C).
    11. Pang, Yi & Pan, Lei & Zhang, Jingmei & Chen, Jianwei & Dong, Yan & Sun, Hexu, 2022. "Integrated sizing and scheduling of an off-grid integrated energy system for an isolated renewable energy hydrogen refueling station," Applied Energy, Elsevier, vol. 323(C).
    12. Zhuang, Rui & Wang, Xiaonan & Guo, Miao & Zhao, Yingru & El-Farra, Nael H. & Palazoglu, Ahmet, 2020. "Waste-to-hydrogen: Recycling HCl to produce H2 and Cl2," Applied Energy, Elsevier, vol. 259(C).
    13. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    14. Jiang, Yihuo & Ni, Hongliang & Ni, Yihan & Guo, Xiaomei, 2023. "Assessing environmental, social, and governance performance and natural resource management policies in China's dual carbon era for a green economy," Resources Policy, Elsevier, vol. 85(PB).
    15. Hossein Yousefi & Mohammad Hasan Ghodusinejad & Armin Ghodrati, 2022. "Multi-Criteria Future Energy System Planning and Analysis for Hot Arid Areas of Iran," Energies, MDPI, vol. 15(24), pages 1-25, December.
    16. Huang, Chunjun & Zong, Yi & You, Shi & Træholt, Chresten & Zheng, Yi & Wang, Jiawei & Zheng, Zixuan & Xiao, Xianyong, 2023. "Economic and resilient operation of hydrogen-based microgrids: An improved MPC-based optimal scheduling scheme considering security constraints of hydrogen facilities," Applied Energy, Elsevier, vol. 335(C).
    17. Zhao, Meng & Xu, Chang & Zhao, Wenxian & Lin, Mingwei, 2023. "New energy vehicle online selection method considering attribute compensation relationship and aspiration strength," Journal of Retailing and Consumer Services, Elsevier, vol. 75(C).
    18. Lopez, Gabriel & Galimova, Tansu & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Towards defossilised steel: Supply chain options for a green European steel industry," Energy, Elsevier, vol. 273(C).
    19. Abdul, Daud & Wenqi, Jiang & Tanveer, Arsalan, 2022. "Prioritization of renewable energy source for electricity generation through AHP-VIKOR integrated methodology," Renewable Energy, Elsevier, vol. 184(C), pages 1018-1032.
    20. Xu-Hui Li & Lin Huang & Qiang Li & Hu-Chen Liu, 2020. "Passenger Satisfaction Evaluation of Public Transportation Using Pythagorean Fuzzy MULTIMOORA Method under Large Group Environment," Sustainability, MDPI, vol. 12(12), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9118-:d:871227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.