IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p1044-1057.html
   My bibliography  Save this article

Wind energy utilization for hydrogen production in an underdeveloped country: An economic investigation

Author

Listed:
  • Rezaei, Mostafa
  • Naghdi-Khozani, Nafiseh
  • Jafari, Niloofar

Abstract

Since economic viability is among the main criteria for deciding whether to launch a project, therefore the aim of this study is to scrutinize economic aspects of harnessing wind energy in Afghanistan for producing hydrogen. In this regard, levelized cost of wind-generated electricity was first projected for all 34 capital cities. Then, energy efficiency of the hydrogen production system, Levelized Cost of Hydrogen (LCOH) and payback period of establishing wind farm were investigated for the city with the least Levelized Cost of Electricity (LCOE). As some unpredictable conditions may occur during lifetime of a wind power plant, causing decline in output energy of the turbines, thus 5 degradation rates were deemed to compute LCOE, LCOH, energy efficiency and payback period under 3 scenarios, which leaded to 15 different cases. The results showed that utilizing one set of “WES 100 GENERAL” wind turbine with rated power of 100 kW in Fayzabad could produce 260,610 kWh/yr of electricity when degradation rate constituted zero. Moreover, Fayzabad had LCOE of 0.063, 0.068 and 0.079 $/kWh and LCOH of 2.118, 2.158 and 2.261 $/kg for the scenarios 1, 2 and 3, respectively, when degradation rate was zero.

Suggested Citation

  • Rezaei, Mostafa & Naghdi-Khozani, Nafiseh & Jafari, Niloofar, 2020. "Wind energy utilization for hydrogen production in an underdeveloped country: An economic investigation," Renewable Energy, Elsevier, vol. 147(P1), pages 1044-1057.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1044-1057
    DOI: 10.1016/j.renene.2019.09.079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119314107
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.09.079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nagasawa, Kazunori & Davidson, F. Todd & Lloyd, Alan C. & Webber, Michael E., 2019. "Impacts of renewable hydrogen production from wind energy in electricity markets on potential hydrogen demand for light-duty vehicles," Applied Energy, Elsevier, vol. 235(C), pages 1001-1016.
    2. Chang, Grace & Jones, Craig A. & Roberts, Jesse D. & Neary, Vincent S., 2018. "A comprehensive evaluation of factors affecting the levelized cost of wave energy conversion projects," Renewable Energy, Elsevier, vol. 127(C), pages 344-354.
    3. Diaf, S. & Notton, G., 2013. "Technical and economic analysis of large-scale wind energy conversion systems in Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 37-51.
    4. Ashuri, T. & Zaaijer, M.B. & Martins, J.R.R.A. & van Bussel, G.J.W. & van Kuik, G.A.M., 2014. "Multidisciplinary design optimization of offshore wind turbines for minimum levelized cost of energy," Renewable Energy, Elsevier, vol. 68(C), pages 893-905.
    5. Vincent, Immanuel & Bessarabov, Dmitri, 2018. "Low cost hydrogen production by anion exchange membrane electrolysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1690-1704.
    6. Rostami, Raheleh & Khoshnava, Seyed Meysam & Lamit, Hasanuddin & Streimikiene, Dalia & Mardani, Abbas, 2017. "An overview of Afghanistan's trends toward renewable and sustainable energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1440-1464.
    7. Wang, Sarah & Tarroja, Brian & Schell, Lori Smith & Shaffer, Brendan & Samuelsen, Scott, 2019. "Prioritizing among the end uses of excess renewable energy for cost-effective greenhouse gas emission reductions," Applied Energy, Elsevier, vol. 235(C), pages 284-298.
    8. Nematollahi, Omid & Alamdari, Pouria & Jahangiri, Mehdi & Sedaghat, Ahmad & Alemrajabi, Ali Akbar, 2019. "A techno-economical assessment of solar/wind resources and hydrogen production: A case study with GIS maps," Energy, Elsevier, vol. 175(C), pages 914-930.
    9. Bruck, Maira & Sandborn, Peter & Goudarzi, Navid, 2018. "A Levelized Cost of Energy (LCOE) model for wind farms that include Power Purchase Agreements (PPAs)," Renewable Energy, Elsevier, vol. 122(C), pages 131-139.
    10. Al-Sharafi, Abdullah & Sahin, Ahmet Z. & Ayar, Tahir & Yilbas, Bekir S., 2017. "Techno-economic analysis and optimization of solar and wind energy systems for power generation and hydrogen production in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 33-49.
    11. Nordin, Nur Dalilah & Rahman, Hasimah Abdul, 2019. "Comparison of optimum design, sizing, and economic analysis of standalone photovoltaic/battery without and with hydrogen production systems," Renewable Energy, Elsevier, vol. 141(C), pages 107-123.
    12. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    13. Jahangiri, Mehdi & Haghani, Ahmad & Mostafaeipour, Ali & Khosravi, Adel & Raeisi, Heidar Ali, 2019. "Assessment of solar-wind power plants in Afghanistan: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 169-190.
    14. Timmerberg, Sebastian & Kaltschmitt, Martin, 2019. "Hydrogen from renewables: Supply from North Africa to Central Europe as blend in existing pipelines – Potentials and costs," Applied Energy, Elsevier, vol. 237(C), pages 795-809.
    15. Hanley, Emma S. & Deane, JP & Gallachóir, BP Ó, 2018. "The role of hydrogen in low carbon energy futures–A review of existing perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3027-3045.
    16. Valverde-Isorna, L. & Ali, D. & Hogg, D. & Abdel-Wahab, M., 2016. "Modelling the performance of wind–hydrogen energy systems: Case study the Hydrogen Office in Scotland/UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1313-1332.
    17. Nian, Victor & Liu, Yang & Zhong, Sheng, 2019. "Life cycle cost-benefit analysis of offshore wind energy under the climatic conditions in Southeast Asia – Setting the bottom-line for deployment," Applied Energy, Elsevier, vol. 233, pages 1003-1014.
    18. Minaeian, Ali & Sedaghat, Ahmad & Mostafaeipour, Ali & Akbar Alemrajabi, Ali, 2017. "Exploring economy of small communities and households by investing on harnessing wind energy in the province of Sistan-Baluchestan in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 835-847.
    19. Ortega-Izquierdo, Margarita & del Río, Pablo, 2016. "Benefits and costs of renewable electricity in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 372-383.
    20. Bakhtiari, Sasan, 2018. "Coming Out Clean: Australian Carbon Pricing and Clean Technology Adoption," Ecological Economics, Elsevier, vol. 154(C), pages 238-246.
    21. Fazelpour, Farivar & Soltani, Nima & Soltani, Sina & Rosen, Marc A., 2015. "Assessment of wind energy potential and economics in the north-western Iranian cities of Tabriz and Ardabil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 87-99.
    22. Bareiß, Kay & de la Rua, Cristina & Möckl, Maximilian & Hamacher, Thomas, 2019. "Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems," Applied Energy, Elsevier, vol. 237(C), pages 862-872.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiu, Rui & Liao, Qi & Klemeš, Jiří Jaromír & Liang, Yongtu & Guo, Zhichao & Chen, Jinyu & Zhang, Haoran, 2022. "Roadmap to urban energy internet with wind electricity-natural gas nexus: Economic and environmental analysis," Energy, Elsevier, vol. 245(C).
    2. Wu, Yunna & Liu, Fangtong & Wu, Junhao & He, Jiaming & Xu, Minjia & Zhou, Jianli, 2022. "Barrier identification and analysis framework to the development of offshore wind-to-hydrogen projects," Energy, Elsevier, vol. 239(PB).
    3. Superchi, Francesco & Papi, Francesco & Mannelli, Andrea & Balduzzi, Francesco & Ferro, Francesco Maria & Bianchini, Alessandro, 2023. "Development of a reliable simulation framework for techno-economic analyses on green hydrogen production from wind farms using alkaline electrolyzers," Renewable Energy, Elsevier, vol. 207(C), pages 731-742.
    4. Ayşe Fidan Altun, 2022. "A Conceptual Design and Analysis of a Novel Trigeneration System Consisting of a Gas Turbine Power Cycle with Intercooling, Ammonia–Water Absorption Refrigeration, and Hot Water Production," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    5. Ahshan, Razzaqul & Onen, Ahmet & Al-Badi, Abdullah H., 2022. "Assessment of wind-to-hydrogen (Wind-H2) generation prospects in the Sultanate of Oman," Renewable Energy, Elsevier, vol. 200(C), pages 271-282.
    6. Zheng, Yi & You, Shi & Huang, Chunjun & Jin, Xin, 2023. "Model-based economic analysis of off-grid wind/hydrogen systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    7. Muhammad, Hafiz Ali & Naseem, Mujahid & Kim, Jonghwan & Kim, Sundong & Choi, Yoonseok & Lee, Young Duk, 2024. "Solar hydrogen production: Technoeconomic analysis of a concentrated solar-powered high-temperature electrolysis system," Energy, Elsevier, vol. 298(C).
    8. Sorrenti, Ilaria & Zheng, Yi & Singlitico, Alessandro & You, Shi, 2023. "Low-carbon and cost-efficient hydrogen optimisation through a grid-connected electrolyser: The case of GreenLab skive," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    9. Jahangiri, Mehdi & Rezaei, Mostafa & Mostafaeipour, Ali & Goojani, Afsaneh Raiesi & Saghaei, Hamed & Hosseini Dehshiri, Seyyed Jalaladdin & Hosseini Dehshiri, Seyyed Shahabaddin, 2022. "Prioritization of solar electricity and hydrogen co-production stations considering PV losses and different types of solar trackers: A TOPSIS approach," Renewable Energy, Elsevier, vol. 186(C), pages 889-903.
    10. Gallo, María Angélica & García Clúa, José Gabriel, 2023. "Sizing and analytical optimization of an alkaline water electrolyzer powered by a grid-assisted wind turbine to minimize grid power exchange," Renewable Energy, Elsevier, vol. 216(C).
    11. Lucas, Tiago R. & Ferreira, Ana F. & Santos Pereira, R.B. & Alves, Marco, 2022. "Hydrogen production from the WindFloat Atlantic offshore wind farm: A techno-economic analysis," Applied Energy, Elsevier, vol. 310(C).
    12. Tianze Lan & Kittisak Jermsittiparsert & Sara T. Alrashood & Mostafa Rezaei & Loiy Al-Ghussain & Mohamed A. Mohamed, 2021. "An Advanced Machine Learning Based Energy Management of Renewable Microgrids Considering Hybrid Electric Vehicles’ Charging Demand," Energies, MDPI, vol. 14(3), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahshan, Razzaqul & Onen, Ahmet & Al-Badi, Abdullah H., 2022. "Assessment of wind-to-hydrogen (Wind-H2) generation prospects in the Sultanate of Oman," Renewable Energy, Elsevier, vol. 200(C), pages 271-282.
    2. Yadav, Deepak & Banerjee, Rangan, 2020. "Net energy and carbon footprint analysis of solar hydrogen production from the high-temperature electrolysis process," Applied Energy, Elsevier, vol. 262(C).
    3. Han Chu & Jiaming He & Yisheng Yang & Yong Huang & Shiman Wang & Yunna Wu, 2022. "Economic-Environmental-Social Benefits Assessment of Wind Power Hydrogen Production Project Based on Cloud-MULTIMOORA Approach," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    4. Siyavash Filom & Soheil Radfar & Roozbeh Panahi & Erfan Amini & Mehdi Neshat, 2021. "Exploring Wind Energy Potential as a Driver of Sustainable Development in the Southern Coasts of Iran: The Importance of Wind Speed Statistical Distribution Model," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    5. Khalid Almutairi & Seyyed Shahabaddin Hosseini Dehshiri & Seyyed Jalaladdin Hosseini Dehshiri & Ali Mostafaeipour & Alibek Issakhov & Kuaanan Techato, 2021. "Use of a Hybrid Wind—Solar—Diesel—Battery Energy System to Power Buildings in Remote Areas: A Case Study," Sustainability, MDPI, vol. 13(16), pages 1-26, August.
    6. Zhuang, Rui & Wang, Xiaonan & Guo, Miao & Zhao, Yingru & El-Farra, Nael H. & Palazoglu, Ahmet, 2020. "Waste-to-hydrogen: Recycling HCl to produce H2 and Cl2," Applied Energy, Elsevier, vol. 259(C).
    7. Negar Shaya & Simon Glöser-Chahoud, 2024. "A Review of Life Cycle Assessment (LCA) Studies for Hydrogen Production Technologies through Water Electrolysis: Recent Advances," Energies, MDPI, vol. 17(16), pages 1-21, August.
    8. Yahya Z. Alharthi & Mahbube K. Siddiki & Ghulam M. Chaudhry, 2018. "Resource Assessment and Techno-Economic Analysis of a Grid-Connected Solar PV-Wind Hybrid System for Different Locations in Saudi Arabia," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    9. Ali Mostafaeipour & Seyyed Jalaladdin Hosseini Dehshiri & Seyyed Shahabaddin Hosseini Dehshiri & Mehdi Jahangiri & Kuaanan Techato, 2020. "A Thorough Analysis of Potential Geothermal Project Locations in Afghanistan," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    10. Saeed, Muhammad Abid & Ahmed, Zahoor & Zhang, Weidong, 2021. "Optimal approach for wind resource assessment using Kolmogorov–Smirnov statistic: A case study for large-scale wind farm in Pakistan," Renewable Energy, Elsevier, vol. 168(C), pages 1229-1248.
    11. Chien, FengSheng & Ngo, Quang-Thanh & Hsu, Ching-Chi & Chau, Ka Yin & Mohsin, Muhammad, 2021. "Assessing the capacity of renewable power production for green energy system: a way forward towards zero carbon electrification," MPRA Paper 109667, University Library of Munich, Germany.
    12. Mehr Gul & Nengling Tai & Wentao Huang & Muhammad Haroon Nadeem & Moduo Yu, 2019. "Assessment of Wind Power Potential and Economic Analysis at Hyderabad in Pakistan: Powering to Local Communities Using Wind Power," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    13. Morteza Aien & Omid Mahdavi, 2020. "On the Way of Policy Making to Reduce the Reliance of Fossil Fuels: Case Study of Iran," Sustainability, MDPI, vol. 12(24), pages 1-28, December.
    14. Assowe Dabar, Omar & Awaleh, Mohamed Osman & Kirk-Davidoff, Daniel & Olauson, Jon & Söder, Lennart & Awaleh, Said Ismael, 2019. "Wind resource assessment and economic analysis for electricity generation in three locations of the Republic of Djibouti," Energy, Elsevier, vol. 185(C), pages 884-894.
    15. Lifeng Du & Yanmei Yang & Luli Zhou & Min Liu, 2024. "Greenhouse Gas Reduction Potential and Economics of Green Hydrogen via Water Electrolysis: A Systematic Review of Value-Chain-Wide Decarbonization," Sustainability, MDPI, vol. 16(11), pages 1-37, May.
    16. Rabbani, Rabab & Zeeshan, Muhammad, 2022. "Impact of policy changes on financial viability of wind power plants in Pakistan," Renewable Energy, Elsevier, vol. 193(C), pages 789-806.
    17. Tarkowski, R. & Uliasz-Misiak, B., 2022. "Towards underground hydrogen storage: A review of barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Ortiz-Imedio, Rafael & Caglayan, Dilara Gulcin & Ortiz, Alfredo & Heinrichs, Heidi & Robinius, Martin & Stolten, Detlef & Ortiz, Inmaculada, 2021. "Power-to-Ships: Future electricity and hydrogen demands for shipping on the Atlantic coast of Europe in 2050," Energy, Elsevier, vol. 228(C).
    19. Bahrami, Arian & Teimourian, Amir & Okoye, Chiemeka Onyeka & Khosravi, Nima, 2019. "Assessing the feasibility of wind energy as a power source in Turkmenistan; a major opportunity for Central Asia's energy market," Energy, Elsevier, vol. 183(C), pages 415-427.
    20. Qiu, Rui & Liao, Qi & Klemeš, Jiří Jaromír & Liang, Yongtu & Guo, Zhichao & Chen, Jinyu & Zhang, Haoran, 2022. "Roadmap to urban energy internet with wind electricity-natural gas nexus: Economic and environmental analysis," Energy, Elsevier, vol. 245(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1044-1057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.