IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v235y2019icp284-298.html
   My bibliography  Save this article

Prioritizing among the end uses of excess renewable energy for cost-effective greenhouse gas emission reductions

Author

Listed:
  • Wang, Sarah
  • Tarroja, Brian
  • Schell, Lori Smith
  • Shaffer, Brendan
  • Samuelsen, Scott

Abstract

Preventing the curtailment of excess renewable generation, caused by mismatches between variable renewable electricity generation and the electric load, is a key strategy for maximizing greenhouse gas emissions reductions by integrating renewable resources into the electric grid. Strategies to harness excess renewable generation for useful purposes exist, but it is unclear which of these end uses provides the most effective use of available excess generation to maximize greenhouse gas emissions reductions in a cost-effective manner. This study investigates and compares three end-use strategies for utilizing excess renewable generation – storage in electrical energy storage systems, production of transportation fuel or vehicle charging, or production of renewable gas – and their diverse technology pathways on the bases of their greenhouse gas emissions reduction potential and the impacts of their implementation on the cost of energy services. This is accomplished by modeling the integration of 46 different technology pathways for using excess renewable generation in a 70% renewable and an 80% renewable electric grid configuration during the year 2050 in California using the Holistic Grid Resource Integration and Deployment (HiGRID) platform, which is a temporally-resolved resource dispatch model of the electricity system. Technology and cost characteristics for batteries, hydrogen energy storage systems, vehicle fueling or charging, and renewable gas production technologies are collected from multiple sources and their effect on reducing greenhouse gas emissions and affecting the Levelized Cost of Energy (LCOE) services in the HiGRID platform are examined. It was discovered that using excess renewable generation to produce transportation fuel for hydrogen vehicles or to charge electric vehicles provided the largest total greenhouse gas emissions reductions and lowest per-ton cost of greenhouse gas reduction. Use in grid energy storage and production of renewable gas provided similar but relatively lower total greenhouse gas reductions than transportation, with the latter imposing lower per-ton costs of greenhouse gas reduction. More generally, greenhouse gas reduction potential of these end uses depended on the intensity of the fuel being displaced by renewables, while LCOE effects depended on the temporal flexibility of the technologies associated with this end use. Overall, this study provides insight into a priority order for directing the use of excess renewable generation towards end uses to achieve greenhouse gas reduction goals such as those in California in a cost-minimal manner, and investigates the sensitivities that influence the effectiveness of these end uses.

Suggested Citation

  • Wang, Sarah & Tarroja, Brian & Schell, Lori Smith & Shaffer, Brendan & Samuelsen, Scott, 2019. "Prioritizing among the end uses of excess renewable energy for cost-effective greenhouse gas emission reductions," Applied Energy, Elsevier, vol. 235(C), pages 284-298.
  • Handle: RePEc:eee:appene:v:235:y:2019:i:c:p:284-298
    DOI: 10.1016/j.apenergy.2018.10.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918316398
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.10.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McPherson, Madeleine & Johnson, Nils & Strubegger, Manfred, 2018. "The role of electricity storage and hydrogen technologies in enabling global low-carbon energy transitions," Applied Energy, Elsevier, vol. 216(C), pages 649-661.
    2. Hanemann, Philipp & Behnert, Marika & Bruckner, Thomas, 2017. "Effects of electric vehicle charging strategies on the German power system," Applied Energy, Elsevier, vol. 203(C), pages 608-622.
    3. Lewandowska-Bernat, Anna & Desideri, Umberto, 2018. "Opportunities of power-to-gas technology in different energy systems architectures," Applied Energy, Elsevier, vol. 228(C), pages 57-67.
    4. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    5. Lin, Yashen & Johnson, Jeremiah X. & Mathieu, Johanna L., 2016. "Emissions impacts of using energy storage for power system reserves," Applied Energy, Elsevier, vol. 168(C), pages 444-456.
    6. Colbertaldo, Paolo & Guandalini, Giulio & Campanari, Stefano, 2018. "Modelling the integrated power and transport energy system: The role of power-to-gas and hydrogen in long-term scenarios for Italy," Energy, Elsevier, vol. 154(C), pages 592-601.
    7. Shaffer, Brendan & Tarroja, Brian & Samuelsen, Scott, 2015. "Dispatch of fuel cells as Transmission Integrated Grid Energy Resources to support renewables and reduce emissions," Applied Energy, Elsevier, vol. 148(C), pages 178-186.
    8. Murray, Portia & Orehounig, Kristina & Grosspietsch, David & Carmeliet, Jan, 2018. "A comparison of storage systems in neighbourhood decentralized energy system applications from 2015 to 2050," Applied Energy, Elsevier, vol. 231(C), pages 1285-1306.
    9. Tarroja, Brian & Shaffer, Brendan & Samuelsen, Scott, 2015. "The importance of grid integration for achievable greenhouse gas emissions reductions from alternative vehicle technologies," Energy, Elsevier, vol. 87(C), pages 504-519.
    10. Georgilakis, Pavlos S., 2008. "Technical challenges associated with the integration of wind power into power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 852-863, April.
    11. Bailera, Manuel & Peña, Begoña & Lisbona, Pilar & Romeo, Luis M., 2018. "Decision-making methodology for managing photovoltaic surplus electricity through Power to Gas: Combined heat and power in urban buildings," Applied Energy, Elsevier, vol. 228(C), pages 1032-1045.
    12. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    13. van Leeuwen, Charlotte & Mulder, Machiel, 2018. "Power-to-gas in electricity markets dominated by renewables," Applied Energy, Elsevier, vol. 232(C), pages 258-272.
    14. Nienhueser, Ian Andrew & Qiu, Yueming, 2016. "Economic and environmental impacts of providing renewable energy for electric vehicle charging – A choice experiment study," Applied Energy, Elsevier, vol. 180(C), pages 256-268.
    15. Eichman, Joshua D. & Mueller, Fabian & Tarroja, Brian & Schell, Lori Smith & Samuelsen, Scott, 2013. "Exploration of the integration of renewable resources into California's electric system using the Holistic Grid Resource Integration and Deployment (HiGRID) tool," Energy, Elsevier, vol. 50(C), pages 353-363.
    16. Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
    17. Arciniegas, Laura M. & Hittinger, Eric, 2018. "Tradeoffs between revenue and emissions in energy storage operation," Energy, Elsevier, vol. 143(C), pages 1-11.
    18. Schroeder, Andreas & Traber, Thure, 2012. "The economics of fast charging infrastructure for electric vehicles," Energy Policy, Elsevier, vol. 43(C), pages 136-144.
    19. Mazza, Andrea & Bompard, Ettore & Chicco, Gianfranco, 2018. "Applications of power to gas technologies in emerging electrical systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 794-806.
    20. Kourkoumpas, Dimitrios-Sotirios & Benekos, Georgios & Nikolopoulos, Nikolaos & Karellas, Sotirios & Grammelis, Panagiotis & Kakaras, Emmanouel, 2018. "A review of key environmental and energy performance indicators for the case of renewable energy systems when integrated with storage solutions," Applied Energy, Elsevier, vol. 231(C), pages 380-398.
    21. Akorede, M.F. & Hizam, H. & Ab Kadir, M.Z.A. & Aris, I. & Buba, S.D., 2012. "Mitigating the anthropogenic global warming in the electric power industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2747-2761.
    22. Sims, Ralph E. H. & Rogner, Hans-Holger & Gregory, Ken, 2003. "Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation," Energy Policy, Elsevier, vol. 31(13), pages 1315-1326, October.
    23. Bird, Lori & Lew, Debra & Milligan, Michael & Carlini, E. Maria & Estanqueiro, Ana & Flynn, Damian & Gomez-Lazaro, Emilio & Holttinen, Hannele & Menemenlis, Nickie & Orths, Antje & Eriksen, Peter Børr, 2016. "Wind and solar energy curtailment: A review of international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 577-586.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rezaei, Mostafa & Naghdi-Khozani, Nafiseh & Jafari, Niloofar, 2020. "Wind energy utilization for hydrogen production in an underdeveloped country: An economic investigation," Renewable Energy, Elsevier, vol. 147(P1), pages 1044-1057.
    2. Fan, Jing-Li & Wang, Jia-Xing & Hu, Jia-Wei & Wang, Yu & Zhang, Xian, 2019. "Optimization of China’s provincial renewable energy installation plan for the 13th five-year plan based on renewable portfolio standards," Applied Energy, Elsevier, vol. 254(C).
    3. Olfati, Mohammad & Bahiraei, Mehdi & Nazari, Saeed & Veysi, Farzad, 2020. "A comprehensive assessment of low-temperature preheating process in natural gas pressure reduction stations to better benefit from solar energy," Energy, Elsevier, vol. 209(C).
    4. Qais, Mohammed H. & Hasanien, Hany M. & Alghuwainem, Saad, 2020. "Parameters extraction of three-diode photovoltaic model using computation and Harris Hawks optimization," Energy, Elsevier, vol. 195(C).
    5. Fahad Saleh Al-Ismail & Md Shafiul Alam & Md Shafiullah & Md Ismail Hossain & Syed Masiur Rahman, 2023. "Impacts of Renewable Energy Generation on Greenhouse Gas Emissions in Saudi Arabia: A Comprehensive Review," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    6. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    7. Wang, Jianxiao & An, Qi & Zhao, Yue & Pan, Guangsheng & Song, Jie & Hu, Qinran & Tan, Chin-Woo, 2023. "Role of electrolytic hydrogen in smart city decarbonization in China," Applied Energy, Elsevier, vol. 336(C).
    8. Ahshan, Razzaqul & Onen, Ahmet & Al-Badi, Abdullah H., 2022. "Assessment of wind-to-hydrogen (Wind-H2) generation prospects in the Sultanate of Oman," Renewable Energy, Elsevier, vol. 200(C), pages 271-282.
    9. Hlalele, Thabo G. & Naidoo, Raj M. & Bansal, Ramesh C. & Zhang, Jiangfeng, 2020. "Multi-objective stochastic economic dispatch with maximal renewable penetration under renewable obligation," Applied Energy, Elsevier, vol. 270(C).
    10. Jarosław Brodny & Magdalena Tutak & Peter Bindzár, 2021. "Assessing the Level of Renewable Energy Development in the European Union Member States. A 10-Year Perspective," Energies, MDPI, vol. 14(13), pages 1-38, June.
    11. Sun, X.Y. & Zhong, X.H. & Zhang, M.Y. & Zhou, T., 2022. "Experimental investigation on a novel wind-to-heat system with high efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    12. Omid Abrishambaf & Pedro Faria & Zita Vale, 2020. "Ramping of Demand Response Event with Deploying Distinct Programs by an Aggregator," Energies, MDPI, vol. 13(6), pages 1-18, March.
    13. Safar, Korai Muhammad & Bux, Mahar Rasool & Faria, Uqaili & Pervez, Shaikh, 2021. "Integrated model of municipal solid waste management for energy recovery in Pakistan," Energy, Elsevier, vol. 219(C).
    14. Qais, Mohammed H. & Hasanien, Hany M. & Alghuwainem, Saad, 2019. "Identification of electrical parameters for three-diode photovoltaic model using analytical and sunflower optimization algorithm," Applied Energy, Elsevier, vol. 250(C), pages 109-117.
    15. Mariel, Petr & Khan, Mohammad Asif & Meyerhoff, Jürgen, 2022. "Valuing individuals’ preferences for air quality improvement: Evidence from a discrete choice experiment in South Delhi," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 432-447.
    16. Wang, Sarah & Tarroja, Brian & Schell, Lori Smith & Samuelsen, Scott, 2021. "Determining cost-optimal approaches for managing excess renewable electricity in decarbonized electricity systems," Renewable Energy, Elsevier, vol. 178(C), pages 1187-1197.
    17. Zita Vale & Pedro Faria & Omid Abrishambaf & Luis Gomes & Tiago Pinto, 2021. "MARTINE—A Platform for Real-Time Energy Management in Smart Grids," Energies, MDPI, vol. 14(7), pages 1-18, March.
    18. Xin Xiao & Gan Zhang & Yulong Ding & Dongsheng Wen, 2019. "Rheological Characteristics of Molten Salt Seeded with Al 2 O 3 Nanopowder and Graphene for Concentrated Solar Power," Energies, MDPI, vol. 12(3), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diana Enescu & Gianfranco Chicco & Radu Porumb & George Seritan, 2020. "Thermal Energy Storage for Grid Applications: Current Status and Emerging Trends," Energies, MDPI, vol. 13(2), pages 1-21, January.
    2. Gorre, Jachin & Ruoss, Fabian & Karjunen, Hannu & Schaffert, Johannes & Tynjälä, Tero, 2020. "Cost benefits of optimizing hydrogen storage and methanation capacities for Power-to-Gas plants in dynamic operation," Applied Energy, Elsevier, vol. 257(C).
    3. Maeder, Mattia & Weiss, Olga & Boulouchos, Konstantinos, 2021. "Assessing the need for flexibility technologies in decarbonized power systems: A new model applied to Central Europe," Applied Energy, Elsevier, vol. 282(PA).
    4. Teirilä, Juha, 2020. "The value of the nuclear power plant fleet in the German power market under the expansion of fluctuating renewables," Energy Policy, Elsevier, vol. 136(C).
    5. Solomon, A.A. & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Curtailment-storage-penetration nexus in the energy transition," Applied Energy, Elsevier, vol. 235(C), pages 1351-1368.
    6. Heggarty, Thomas & Bourmaud, Jean-Yves & Girard, Robin & Kariniotakis, Georges, 2020. "Quantifying power system flexibility provision," Applied Energy, Elsevier, vol. 279(C).
    7. McDonagh, Shane & Deane, Paul & Rajendran, Karthik & Murphy, Jerry D., 2019. "Are electrofuels a sustainable transport fuel? Analysis of the effect of controls on carbon, curtailment, and cost of hydrogen," Applied Energy, Elsevier, vol. 247(C), pages 716-730.
    8. David Jure Jovan & Gregor Dolanc, 2020. "Can Green Hydrogen Production Be Economically Viable under Current Market Conditions," Energies, MDPI, vol. 13(24), pages 1-16, December.
    9. Cruz, Marco R.M. & Fitiwi, Desta Z. & Santos, Sérgio F. & Catalão, João P.S., 2018. "A comprehensive survey of flexibility options for supporting the low-carbon energy future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 338-353.
    10. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    11. Eveloy, Valerie, 2019. "Hybridization of solid oxide electrolysis-based power-to-methane with oxyfuel combustion and carbon dioxide utilization for energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 550-571.
    12. Wang, Sarah & Tarroja, Brian & Schell, Lori Smith & Samuelsen, Scott, 2021. "Determining cost-optimal approaches for managing excess renewable electricity in decarbonized electricity systems," Renewable Energy, Elsevier, vol. 178(C), pages 1187-1197.
    13. Li, Yanxue & Zhang, Xiaoyi & Gao, Weijun & Ruan, Yingjun, 2020. "Capacity credit and market value analysis of photovoltaic integration considering grid flexibility requirements," Renewable Energy, Elsevier, vol. 159(C), pages 908-919.
    14. de Jong, Pieter & Dargaville, Roger & Silver, Jeremy & Utembe, Steven & Kiperstok, Asher & Torres, Ednildo Andrade, 2017. "Forecasting high proportions of wind energy supplying the Brazilian Northeast electricity grid," Applied Energy, Elsevier, vol. 195(C), pages 538-555.
    15. Lane, Blake & Shaffer, Brendan & Samuelsen, Scott, 2020. "A comparison of alternative vehicle fueling infrastructure scenarios," Applied Energy, Elsevier, vol. 259(C).
    16. Duncan, Corey & Roche, Robin & Jemei, Samir & Pera, Marie-Cécile, 2022. "Techno-economical modelling of a power-to-gas system for plant configuration evaluation in a local context," Applied Energy, Elsevier, vol. 315(C).
    17. De Vivero-Serrano, Gustavo & Bruninx, Kenneth & Delarue, Erik, 2019. "Implications of bid structures on the offering strategies of merchant energy storage systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    18. Guerra, K. & Haro, P. & Gutiérrez, R.E. & Gómez-Barea, A., 2022. "Facing the high share of variable renewable energy in the power system: Flexibility and stability requirements," Applied Energy, Elsevier, vol. 310(C).
    19. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    20. Jenkins, J.D. & Zhou, Z. & Ponciroli, R. & Vilim, R.B. & Ganda, F. & de Sisternes, F. & Botterud, A., 2018. "The benefits of nuclear flexibility in power system operations with renewable energy," Applied Energy, Elsevier, vol. 222(C), pages 872-884.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:235:y:2019:i:c:p:284-298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.