IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i14p8329-d858107.html
   My bibliography  Save this article

Plant Nutrition for Human Health: A Pictorial Review on Plant Bioactive Compounds for Sustainable Agriculture

Author

Listed:
  • Hassan El-Ramady

    (Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
    Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary)

  • Peter Hajdú

    (Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary)

  • Gréta Törős

    (Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary)

  • Khandsuren Badgar

    (Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary)

  • Xhensila Llanaj

    (Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary)

  • Attila Kiss

    (Knowledge Utilization Center of Agri-Food Industry, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary)

  • Neama Abdalla

    (Plant Biotechnology Department, Biotechnology Research Institute, National Research Centre, 33 El Buhouth St., Dokki, Giza 12622, Egypt)

  • Alaa El-Dein Omara

    (Agriculture Microbiology Department, Soil, Water and Environment Research Institute (SWERI), Sakha Agricultural Research Station, Agriculture Research Center, Kafr El-Sheikh 33717, Egypt)

  • Tamer Elsakhawy

    (Agriculture Microbiology Department, Soil, Water and Environment Research Institute (SWERI), Sakha Agricultural Research Station, Agriculture Research Center, Kafr El-Sheikh 33717, Egypt)

  • Heba Elbasiouny

    (Environmental and Biological Sciences Department, Home Economics Faculty, Al-Azhar University, Tanta 31512, Egypt)

  • Fathy Elbehiry

    (Department of Basic and Applied Sciences, Higher Institute for Agricultural Cooperation, Cairo 11241, Egypt)

  • Megahed Amer

    (Soil Improvement and Conservation Department, Soil, Water and Environment Research Institute (SWERI), Sakha Agricultural Research Station, Agriculture Research Center, Kafr El-Sheikh 33717, Egypt)

  • Mohammed E. El-Mahrouk

    (Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt)

  • József Prokisch

    (Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary)

Abstract

Is there any relationship between plant nutrition and human health? The overall response to this question is very positive, and a strong relationship between the nutrition of plants and humans has been reported in the literature. The nutritional status of edible plants consumed by humans can have a negative or positive impact on human health. This review was designed to assess the importance of plant bioactive compounds for human health under the umbrella of sustainable agriculture. With respect to the first research question, it was found that plant bioactives (e.g., alkaloids, carotenoids, flavonoids, phenolics, and terpenoids) have a crucial role in human health due to their therapeutic benefits, and their potentiality depends on several factors, including botanical, environmental, and clinical attributes. Plant bioactives could be produced using plant tissue culture tools (as a kind of agro-biotechnological method), especially in cases of underexploited or endangered plants. Bioactive production of plants depends on many factors, especially climate change (heat stress, drought, UV radiation, ozone, and elevated CO 2 ), environmental pollution, and problematic soils (degraded, saline/alkaline, waterlogged, etc.). Under the previously mentioned stresses, in reviewing the literature, a positive or negative association was found depending on the kinds of stress or bioactives and their attributes. The observed correlation between plant bioactives and stress (or growth factors) might explain the importance of these bioactives for human health. Their accumulation in stressed plants can increase their tolerance to stress and their therapeutic roles. The results of this study are in keeping with previous observational studies, which confirmed that the human nutrition might start from edible plants and their bioactive contents, which are consumed by humans. This review is the first report that analyzes this previously observed relationship using pictorial presentation.

Suggested Citation

  • Hassan El-Ramady & Peter Hajdú & Gréta Törős & Khandsuren Badgar & Xhensila Llanaj & Attila Kiss & Neama Abdalla & Alaa El-Dein Omara & Tamer Elsakhawy & Heba Elbasiouny & Fathy Elbehiry & Megahed Ame, 2022. "Plant Nutrition for Human Health: A Pictorial Review on Plant Bioactive Compounds for Sustainable Agriculture," Sustainability, MDPI, vol. 14(14), pages 1-45, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8329-:d:858107
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/14/8329/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/14/8329/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Köninger, Julia & Lugato, Emanuele & Panagos, Panos & Kochupillai, Mrinalini & Orgiazzi, Alberto & Briones, Maria J.I., 2021. "Manure management and soil biodiversity: Towards more sustainable food systems in the EU," Agricultural Systems, Elsevier, vol. 194(C).
    2. Diana Feliciano & John Recha & Gebermedihin Ambaw & Kirsten MacSween & Dawit Solomon & Eva Wollenberg, 2022. "Assessment of agricultural emissions, climate change mitigation and adaptation practices in Ethiopia," Climate Policy, Taylor & Francis Journals, vol. 22(4), pages 427-444, April.
    3. Heba Elbasiouny & Hassan El-Ramady & Fathy Elbehiry & Vishnu D. Rajput & Tatiana Minkina & Saglara Mandzhieva, 2022. "Plant Nutrition under Climate Change and Soil Carbon Sequestration," Sustainability, MDPI, vol. 14(2), pages 1-20, January.
    4. Hassan El-Ramady & Gréta Törős & Khandsuren Badgar & Xhensila Llanaj & Peter Hajdú & Mohammed E. El-Mahrouk & Neama Abdalla & József Prokisch, 2022. "A Comparative Photographic Review on Higher Plants and Macro-Fungi: A Soil Restoration for Sustainable Production of Food and Energy," Sustainability, MDPI, vol. 14(12), pages 1-33, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Bellino & Bruno Bisceglia & Daniela Baldantoni, 2023. "Effects of Weak Magnetic Fields on Plant Chemical Composition and Its Ecological Implications," Sustainability, MDPI, vol. 15(5), pages 1-10, February.
    2. Hassan El-Ramady & Eric C. Brevik & Yousry Bayoumi & Tarek A. Shalaby & Mohammed E. El-Mahrouk & Naglaa Taha & Heba Elbasiouny & Fathy Elbehiry & Megahed Amer & Neama Abdalla & József Prokisch & Svein, 2022. "An Overview of Agro-Waste Management in Light of the Water-Energy-Waste Nexus," Sustainability, MDPI, vol. 14(23), pages 1-30, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiong, Yuyu & Guo, Hongxiang & Nor, Datin Dr Mariani Md & Song, Andong & Dai, Li, 2023. "Mineral resources depletion, environmental degradation, and exploitation of natural resources: COVID-19 aftereffects," Resources Policy, Elsevier, vol. 85(PA).
    2. Jakub Mazurkiewicz, 2023. "The Impact of Manure Use for Energy Purposes on the Economic Balance of a Dairy Farm," Energies, MDPI, vol. 16(18), pages 1-22, September.
    3. Xu Yang & Dongsheng Chu & Haibo Hu & Wenbin Deng & Jianyu Chen & Shaojun Guo, 2024. "Effects of Land-Use Type and Salinity on Soil Carbon Mineralization in Coastal Areas of Northern Jiangsu Province," Sustainability, MDPI, vol. 16(8), pages 1-19, April.
    4. Muhammad Yaseen & Adeel Ahmad & Noman Younas & Muhammad Naveed & Muhammad Asif Ali & Syed Shahid Hussain Shah & Muhammad Hasnain & Adnan Mustafa, 2023. "Value-Added Fertilizers Enhanced Growth, Yield and Nutrient Use Efficiency through Reduced Ammonia Volatilization Losses under Maize–Rice Cropping Cultivation," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    5. Jakub Mazurkiewicz & Pola Sidoruk & Jacek Dach & Malgorzata Szumacher-Strabel & Dorota Lechniak & Paul Galama & Abele Kuipers & Ireneusz R. Antkowiak & Adam Cieslak, 2023. "Leverage of Essential Oils on Faeces-Based Methane and Biogas Production in Dairy Cows," Agriculture, MDPI, vol. 13(10), pages 1-11, October.
    6. Joanna Mikusińska & Monika Kuźnia & Klaudia Czerwińska & Małgorzata Wilk, 2023. "Hydrothermal Carbonization of Digestate Produced in the Biogas Production Process," Energies, MDPI, vol. 16(14), pages 1-18, July.
    7. Salvatore Rapisarda & Giampaolo Di Biase & Martina Mazzon & Claudio Ciavatta & Luciano Cavani, 2022. "Nitrogen Availability in Organic Fertilizers from Tannery and Slaughterhouse By-Products," Sustainability, MDPI, vol. 14(19), pages 1-14, October.
    8. Nelė Jurkėnaitė, 2023. "Analysis of the Nexus between Structural and Climate Changes in EU Pig Farming," Agriculture, MDPI, vol. 13(9), pages 1-19, September.
    9. Hassan El-Ramady & Gréta Törős & Khandsuren Badgar & Xhensila Llanaj & Peter Hajdú & Mohammed E. El-Mahrouk & Neama Abdalla & József Prokisch, 2022. "A Comparative Photographic Review on Higher Plants and Macro-Fungi: A Soil Restoration for Sustainable Production of Food and Energy," Sustainability, MDPI, vol. 14(12), pages 1-33, June.
    10. Wendy M. Rauw & Luis Gomez‐Raya & Laura Star & Margareth Øverland & Evelyne Delezie & Mikelis Grivins & Karen T. Hamann & Marco Pietropaoli & Michiel T. Klaassen & Gunnar Klemetsdal & María G. Gil & O, 2023. "Sustainable development in circular agriculture: An illustrative bee↺legume↺poultry example," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 639-648, April.
    11. Izabella Maj & Kamil Niesporek & Krzysztof Matus & Francesco Miccio & Mauro Mazzocchi & Paweł Łój, 2024. "The Impact of Aluminosilicate Additives upon the Chlorine Distribution and Melting Behavior of Poultry Litter Ash," Energies, MDPI, vol. 17(8), pages 1-17, April.
    12. Jakub Mazurkiewicz, 2022. "Analysis of the Energy and Material Use of Manure as a Fertilizer or Substrate for Biogas Production during the Energy Crisis," Energies, MDPI, vol. 15(23), pages 1-20, November.
    13. Leonidas Liakos & Panos Panagos, 2022. "Challenges in the Geo-Processing of Big Soil Spatial Data," Land, MDPI, vol. 11(12), pages 1-24, December.
    14. Balázs Grosz & Björn Kemmann & Stefan Burkart & Søren O. Petersen & Reinhard Well, 2022. "Understanding the Impact of Liquid Organic Fertilisation and Associated Application Techniques on N 2 , N 2 O and CO 2 Fluxes from Agricultural Soils," Agriculture, MDPI, vol. 12(5), pages 1-20, May.
    15. Yanhao Wu & Zijun Wu & Simin Jiang & Shuaishuai Lu & Nianqing Zhou, 2022. "Elemental Stoichiometry (C, N, P) of Soil in the Wetland Critical Zone of Dongting Lake, China: Understanding Soil C, N and P Status at Greater Depth," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    16. Ashton, Lisa, 2022. "A framework for promoting natural climate solutions in the agriculture sector," Land Use Policy, Elsevier, vol. 122(C).
    17. Sergii Stepanenko & Vitalii Kuzoma & Karyna Tymoshenko, 2023. "Current State And Directions Of Further Circular Agricultural Economy Development In Ukraine," Baltic Journal of Economic Studies, Publishing house "Baltija Publishing", vol. 9(4).
    18. Teodoro Semeraro & Aurelia Scarano & Angelo Leggieri & Antonio Calisi & Monica De Caroli, 2023. "Impact of Climate Change on Agroecosystems and Potential Adaptation Strategies," Land, MDPI, vol. 12(6), pages 1-21, May.
    19. Mohamed Hemida Abd-Alla & Salem M. Al-Amri & Abdel-Wahab Elsadek El-Enany, 2023. "Enhancing Rhizobium –Legume Symbiosis and Reducing Nitrogen Fertilizer Use Are Potential Options for Mitigating Climate Change," Agriculture, MDPI, vol. 13(11), pages 1-26, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8329-:d:858107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.