IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i7p1414-d1695399.html
   My bibliography  Save this article

Improving Soil Health Using Date Palm Residues in Southern Tunisian Olive Orchards

Author

Listed:
  • Najoua Chniguir

    (Research Laboratory of Geosystems, Georessources and Geoenvironments, Faculty of Sciences, University of Gabes, Gabes 6072, Tunisia)

  • Abdelhakim Bouajila

    (Research Laboratory of Geosystems, Georessources and Geoenvironments, Faculty of Sciences, University of Gabes, Gabes 6072, Tunisia)

  • Ángeles Prieto-Fernández

    (Departamento de Suelos, Biosistemas y Ecología Agroforestal, MBG Santiago-CSIC, Avenida de Vigo s/n, Campus Vida, 15705 Santiago de Compostela, Spain)

  • Zohra Omar

    (Research Laboratory of Geosystems, Georessources and Geoenvironments, Faculty of Sciences, University of Gabes, Gabes 6072, Tunisia)

  • Salah Mahmoudi

    (Research Laboratory of Geosystems, Georessources and Geoenvironments, Faculty of Sciences, University of Gabes, Gabes 6072, Tunisia)

  • Carmen Trasar-Cepeda

    (Departamento de Suelos, Biosistemas y Ecología Agroforestal, MBG Santiago-CSIC, Avenida de Vigo s/n, Campus Vida, 15705 Santiago de Compostela, Spain)

Abstract

This study evaluated the effects of different types and rates of locally produced organic residues on soil organic matter (SOM) and soil health in highly degraded loamy soils of olive orchards in arid southern Tunisia. Three residues were tested: poultry manure, raw date palm waste, and composted date palm waste mixed with manure. A randomised field trial was conducted over three years. Two years after application, soil samples were analysed for physical and chemical properties, basal respiration, nitrogen mineralisation, microbial biomass, enzyme activities (dehydrogenase, phosphomonoesterase, β-glucosidase, urease, arylsulphatase), and community-level physiological profiles. All residues increased SOM and available phosphorus (Pi), with dose-dependent effects sustained over time, though significant increases were only observed at the highest application rates. The most notable improvements occurred in soils amended with composted date palm waste. In contrast, biological and biochemical parameters showed little response, even after remoistening to stimulate microbial activity. This limited response was attributed to the absence of vegetation and, consequently, of root exudates and plant residues. This will be further investigated by assessing changes in the same biological and biochemical properties following the implementation of an intercropping system, which is expected to enhance both SOM content and microbial activity in these soils.

Suggested Citation

  • Najoua Chniguir & Abdelhakim Bouajila & Ángeles Prieto-Fernández & Zohra Omar & Salah Mahmoudi & Carmen Trasar-Cepeda, 2025. "Improving Soil Health Using Date Palm Residues in Southern Tunisian Olive Orchards," Land, MDPI, vol. 14(7), pages 1-29, July.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:7:p:1414-:d:1695399
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/7/1414/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/7/1414/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    2. Houda Oueriemmi & Petra Susan Kidd & Carmen Trasar-Cepeda & Beatriz Rodríguez-Garrido & Rahma Inès Zoghlami & Kaouther Ardhaoui & Ángeles Prieto-Fernández & Mohamed Moussa, 2021. "Evaluation of Composted Organic Wastes and Farmyard Manure for Improving Fertility of Poor Sandy Soils in Arid Regions," Agriculture, MDPI, vol. 11(5), pages 1-19, May.
    3. Nadhem Brahim & Hatem Ibrahim & Rawan Mlih & Abdelhakim Bouajila & Nissaf Karbout & Roland Bol, 2022. "Soil OC and N Stocks in the Saline Soil of Tunisian Gataaya Oasis Eight Years after Application of Manure and Compost," Land, MDPI, vol. 11(3), pages 1-16, March.
    4. Heba Elbasiouny & Hassan El-Ramady & Fathy Elbehiry & Vishnu D. Rajput & Tatiana Minkina & Saglara Mandzhieva, 2022. "Plant Nutrition under Climate Change and Soil Carbon Sequestration," Sustainability, MDPI, vol. 14(2), pages 1-20, January.
    5. Eduardo Moreno-Jiménez & César Plaza & Hugo Saiz & Rebeca Manzano & Maren Flagmeier & Fernando T. Maestre, 2019. "Aridity and reduced soil micronutrient availability in global drylands," Nature Sustainability, Nature, vol. 2(5), pages 371-377, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oksana Puzniak & Natalia Hrynchyshyn & Tetiana Datsko & Sylwia Andruszczak & Bohdan Hulko, 2022. "Consequences of the Long-Term Fertilization System Use on Physical and Microbiological Soil Status in the Western Polissia of Ukraine," Agriculture, MDPI, vol. 12(11), pages 1-18, November.
    2. Denis-Constantin Țopa & Sorin Căpșună & Anca-Elena Calistru & Costică Ailincăi, 2025. "Sustainable Practices for Enhancing Soil Health and Crop Quality in Modern Agriculture: A Review," Agriculture, MDPI, vol. 15(9), pages 1-38, May.
    3. Elisa Morri & Riccardo Santolini, 2021. "Ecosystem Services Valuation for the Sustainable Land Use Management by Nature-Based Solution (NbS) in the Common Agricultural Policy Actions: A Case Study on the Foglia River Basin (Marche Region, It," Land, MDPI, vol. 11(1), pages 1-23, December.
    4. Katarina Arvidsson Segerkvist & Helena Hansson & Ulf Sonesson & Stefan Gunnarsson, 2021. "A Systematic Mapping of Current Literature on Sustainability at Farm-Level in Beef and Lamb Meat Production," Sustainability, MDPI, vol. 13(5), pages 1-14, February.
    5. Hualin Xie & Yingqian Huang & Qianru Chen & Yanwei Zhang & Qing Wu, 2019. "Prospects for Agricultural Sustainable Intensification: A Review of Research," Land, MDPI, vol. 8(11), pages 1-27, October.
    6. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    7. Aude Ridier & Caroline Roussy & Karim Chaib, 2021. "Adoption of crop diversification by specialized grain farmers in south-western France: evidence from a choice-modelling experiment," Review of Agricultural, Food and Environmental Studies, Springer, vol. 102(3), pages 265-283, September.
    8. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    9. Diriba Shiferaw G., 2017. "Water-Nutrients Interaction: Exploring the Effects of Water as a Central Role for Availability & Use Efficiency of Nutrients by Shallow Rooted Vegetable Crops - A Review," Journal of Agriculture and Crops, Academic Research Publishing Group, vol. 3(10), pages 78-93, 10-2017.
    10. Sheng Gong & Jason.S. Bergtold & Elizabeth Yeager, 2021. "Assessing the joint adoption and complementarity between in-field conservation practices of Kansas farmers," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 9(1), pages 1-24, December.
    11. Seufert, Verena & Ramankutty, Navin & Mayerhofer, Tabea, 2017. "What is this thing called organic? – How organic farming is codified in regulations," Food Policy, Elsevier, vol. 68(C), pages 10-20.
    12. Kataki, Sampriti & West, Helen & Clarke, Michèle & Baruah, D.C., 2016. "Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 142-156.
    13. Alexander D. Chapman & Stephen E. Darby & Hoàng M. Hồng & Emma L. Tompkins & Tri P. D. Van, 2016. "Adaptation and development trade-offs: fluvial sediment deposition and the sustainability of rice-cropping in An Giang Province, Mekong Delta," Climatic Change, Springer, vol. 137(3), pages 593-608, August.
    14. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    15. Chen, Chien-Ming & van Dalen, Jan, 2010. "Measuring dynamic efficiency: Theories and an integrated methodology," European Journal of Operational Research, Elsevier, vol. 203(3), pages 749-760, June.
    16. Ethan Gordon & Federico Davila & Chris Riedy, 2022. "Transforming landscapes and mindscapes through regenerative agriculture," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(2), pages 809-826, June.
    17. Teklewold, Hailemariam & Kassie, Menale & Shiferaw, Bekele & Köhlin, Gunnar, 2013. "Cropping system diversification, conservation tillage and modern seed adoption in Ethiopia: Impacts on household income, agrochemical use and demand for labor," Ecological Economics, Elsevier, vol. 93(C), pages 85-93.
    18. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    19. Horacio Augstburger & Fabian Käser & Stephan Rist, 2019. "Assessing Food Systems and Their Impact on Common Pool Resources and Resilience," Land, MDPI, vol. 8(4), pages 1-25, April.
    20. Samuel I. Haruna & Nsalambi V. Nkongolo, 2020. "Influence of Cover Crop, Tillage, and Crop Rotation Management on Soil Nutrients," Agriculture, MDPI, vol. 10(6), pages 1-14, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:7:p:1414-:d:1695399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.