IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p7764-d847873.html
   My bibliography  Save this article

Developing a Multilevel Decision Support Tool for Urban Mobility

Author

Listed:
  • Josep Maria Salanova

    (Hellenic Institute of Transport, Centre for Research and Technology Hellas, 6th km Charilaou-Thermi Rd., 57001 Thessaloniki, Greece)

  • Georgia Ayfantopoulou

    (Hellenic Institute of Transport, Centre for Research and Technology Hellas, 6th km Charilaou-Thermi Rd., 57001 Thessaloniki, Greece)

  • Evripidis Magkos

    (Hellenic Institute of Transport, Centre for Research and Technology Hellas, 6th km Charilaou-Thermi Rd., 57001 Thessaloniki, Greece)

  • Ioannis Mallidis

    (Hellenic Institute of Transport, Centre for Research and Technology Hellas, 6th km Charilaou-Thermi Rd., 57001 Thessaloniki, Greece)

  • Zisis Maleas

    (Hellenic Institute of Transport, Centre for Research and Technology Hellas, 6th km Charilaou-Thermi Rd., 57001 Thessaloniki, Greece)

  • Santhanakrishnan Narayanan

    (TUM School of Engineering and Design, Technical University of Munich, Arcisstraße 21, 80333 München, Germany)

  • Constantinos Antoniou

    (TUM School of Engineering and Design, Technical University of Munich, Arcisstraße 21, 80333 München, Germany)

  • Athina Tympakianaki

    (Aimsun SLU, Ronda Universitat, 22 B, 08007 Barcelona, Spain)

  • Ignacio Martin

    (Nommon Solutions and Technologies S.L., Plaza de Carlos Trias Bertrán 4, 2nd Floor, 28020 Madrid, Spain)

  • Jenny Fajardo-Calderin

    (Deusto Institute of Technology (DeustoTech), Faculty of Engineering, University of Deusto, 48007 Bilbao, Spain)

Abstract

Decisions on transport policy measures have long-term and important impacts on the economy, environment and society. Transport policy measures can lock up capital for decades and cause manifold external effects. In order to allow policymakers to evaluate transport policies, the developed decision support tool facilitates the evaluation of the multidimensional impacts of the implementation of transport policies. The objective of the decision support toolset presented in this paper is to support transportation planning and design practices based on an integrated transportation analysis of the area of examination to determine the most applicable combination of mobility services. This paper provides a comprehensive description of the interactive decision support tool implemented to help cities and decision makers design their strategies and shape the urban mobility of the future.

Suggested Citation

  • Josep Maria Salanova & Georgia Ayfantopoulou & Evripidis Magkos & Ioannis Mallidis & Zisis Maleas & Santhanakrishnan Narayanan & Constantinos Antoniou & Athina Tympakianaki & Ignacio Martin & Jenny Fa, 2022. "Developing a Multilevel Decision Support Tool for Urban Mobility," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7764-:d:847873
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/7764/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/7764/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tal Raviv & Ofer Kolka, 2013. "Optimal inventory management of a bike-sharing station," IISE Transactions, Taylor & Francis Journals, vol. 45(10), pages 1077-1093.
    2. Lin, Jenn-Rong & Yang, Ta-Hui, 2011. "Strategic design of public bicycle sharing systems with service level constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(2), pages 284-294, March.
    3. Mladenovic, Nenad & Brimberg, Jack & Hansen, Pierre & Moreno-Perez, Jose A., 2007. "The p-median problem: A survey of metaheuristic approaches," European Journal of Operational Research, Elsevier, vol. 179(3), pages 927-939, June.
    4. Frade, Ines & Ribeiro, Anabela, 2015. "Bike-sharing stations: A maximal covering location approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 216-227.
    5. Dell'Amico, Mauro & Hadjicostantinou, Eleni & Iori, Manuel & Novellani, Stefano, 2014. "The bike sharing rebalancing problem: Mathematical formulations and benchmark instances," Omega, Elsevier, vol. 45(C), pages 7-19.
    6. Jean-François Cordeau & Gilbert Laporte, 2007. "The dial-a-ride problem: models and algorithms," Annals of Operations Research, Springer, vol. 153(1), pages 29-46, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruno Albert Neumann-Saavedra & Teodor Gabriel Crainic & Bernard Gendron & Dirk Christian Mattfeld & Michael Römer, 2020. "Integrating Resource Management in Service Network Design for Bike-Sharing Systems," Transportation Science, INFORMS, vol. 54(5), pages 1251-1271, September.
    2. Zhou, Yaoming & Lin, Zeyu & Guan, Rui & Sheu, Jiuh-Biing, 2023. "Dynamic battery swapping and rebalancing strategies for e-bike sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 177(C).
    3. Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    4. Huang, Di & Chen, Xinyuan & Liu, Zhiyuan & Lyu, Cheng & Wang, Shuaian & Chen, Xuewu, 2020. "A static bike repositioning model in a hub-and-spoke network framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    5. Lv, Chang & Zhang, Chaoyong & Lian, Kunlei & Ren, Yaping & Meng, Leilei, 2020. "A hybrid algorithm for the static bike-sharing re-positioning problem based on an effective clustering strategy," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 1-21.
    6. Çelebi, Dilay & Yörüsün, Aslı & Işık, Hanife, 2018. "Bicycle sharing system design with capacity allocations," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 86-98.
    7. Stanislav Kubaľák & Alica Kalašová & Ambróz Hájnik, 2021. "The Bike-Sharing System in Slovakia and the Impact of COVID-19 on This Shared Mobility Service in a Selected City," Sustainability, MDPI, vol. 13(12), pages 1-20, June.
    8. Ho, Sin C. & Szeto, W.Y., 2014. "Solving a static repositioning problem in bike-sharing systems using iterated tabu search," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 180-198.
    9. Jialing Zhao & Hongwei Wang & Yuxin Huang & Yuan Meng, 2020. "Does Massive Placement of Bicycles Win the Market for the Bicycle-Sharing Company in China?," Sustainability, MDPI, vol. 12(13), pages 1-14, June.
    10. Legros, Benjamin, 2019. "Dynamic repositioning strategy in a bike-sharing system; how to prioritize and how to rebalance a bike station," European Journal of Operational Research, Elsevier, vol. 272(2), pages 740-753.
    11. Ho, Sin C. & Szeto, W.Y., 2017. "A hybrid large neighborhood search for the static multi-vehicle bike-repositioning problem," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 340-363.
    12. Gilbert Laporte & Frédéric Meunier & Roberto Wolfler Calvo, 2018. "Shared mobility systems: an updated survey," Annals of Operations Research, Springer, vol. 271(1), pages 105-126, December.
    13. Zhang, Yuhan & Shao, Yichang & Bi, Hui & Aoyong, Li & Ye, Zhirui, 2023. "Bike-sharing systems rebalancing considering redistribution proportions: A user-based repositioning approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    14. Dehdari Ebrahimi, Zhila & Momenitabar, Mohsen & Nasri, Arefeh A. & Mattson, Jeremy, 2022. "Using a GIS-based spatial approach to determine the optimal locations of bikeshare stations: The case of Washington D.C," Transport Policy, Elsevier, vol. 127(C), pages 48-60.
    15. Ahmed Kheiri & Alina G. Dragomir & David Mueller & Joaquim Gromicho & Caroline Jagtenberg & Jelke J. Hoorn, 2019. "Tackling a VRP challenge to redistribute scarce equipment within time windows using metaheuristic algorithms," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 561-595, December.
    16. Forma, Iris A. & Raviv, Tal & Tzur, Michal, 2015. "A 3-step math heuristic for the static repositioning problem in bike-sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 230-247.
    17. Schuijbroek, J. & Hampshire, R.C. & van Hoeve, W.-J., 2017. "Inventory rebalancing and vehicle routing in bike sharing systems," European Journal of Operational Research, Elsevier, vol. 257(3), pages 992-1004.
    18. Yongji Jia & Wang Zeng & Yanting Xing & Dong Yang & Jia Li, 2020. "The Bike-Sharing Rebalancing Problem Considering Multi-Energy Mixed Fleets and Traffic Restrictions," Sustainability, MDPI, vol. 13(1), pages 1-15, December.
    19. Jia Shu & Mabel C. Chou & Qizhang Liu & Chung-Piaw Teo & I-Lin Wang, 2013. "Models for Effective Deployment and Redistribution of Bicycles Within Public Bicycle-Sharing Systems," Operations Research, INFORMS, vol. 61(6), pages 1346-1359, December.
    20. Mete Suleyman & Cil Zeynel Abidin & Özceylan Eren, 2018. "Location and Coverage Analysis of Bike- Sharing Stations in University Campus," Business Systems Research, Sciendo, vol. 9(2), pages 80-95, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7764-:d:847873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.