IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i10p6339-d821795.html
   My bibliography  Save this article

A Deep Learning-Based Model for Date Fruit Classification

Author

Listed:
  • Khalied Albarrak

    (Department of Management Information Systems, College of Business Administration, King Faisal University, Al-Ahsa 31982, Saudi Arabia)

  • Yonis Gulzar

    (Department of Management Information Systems, College of Business Administration, King Faisal University, Al-Ahsa 31982, Saudi Arabia)

  • Yasir Hamid

    (Information Security and Engineering Technology, Abu Dhabi Polytechnic, Abu Dhabi 111499, United Arab Emirates)

  • Abid Mehmood

    (Department of Management Information Systems, College of Business Administration, King Faisal University, Al-Ahsa 31982, Saudi Arabia)

  • Arjumand Bano Soomro

    (Department of Management Information Systems, College of Business Administration, King Faisal University, Al-Ahsa 31982, Saudi Arabia)

Abstract

A total of 8.46 million tons of date fruit are produced annually around the world. The date fruit is considered a high-valued confectionery and fruit crop. The hot arid zones of Southwest Asia, North Africa, and the Middle East are the major producers of date fruit. The production of dates in 1961 was 1.8 million tons, which increased to 2.8 million tons in 1985. In 2001, the production of dates was recorded at 5.4 million tons, whereas recently it has reached 8.46 million tons. A common problem found in the industry is the absence of an autonomous system for the classification of date fruit, resulting in reliance on only the manual expertise, often involving hard work, expense, and bias. Recently, Machine Learning (ML) techniques have been employed in such areas of agriculture and fruit farming and have brought great convenience to human life. An automated system based on ML can carry out the fruit classification and sorting tasks that were previously handled by human experts. In various fields, CNNs (convolutional neural networks) have achieved impressive results in image classification. Considering the success of CNNs and transfer learning in other image classification problems, this research also employs a similar approach and proposes an efficient date classification model. In this research, a dataset of eight different classes of date fruit has been created to train the proposed model. Different preprocessing techniques have been applied in the proposed model, such as image augmentation, decayed learning rate, model checkpointing, and hybrid weight adjustment to increase the accuracy rate. The results show that the proposed model based on MobileNetV2 architecture has achieved 99% accuracy. The proposed model has also been compared with other existing models such as AlexNet, VGG16, InceptionV3, ResNet, and MobileNetV2. The results prove that the proposed model performs better than all other models in terms of accuracy.

Suggested Citation

  • Khalied Albarrak & Yonis Gulzar & Yasir Hamid & Abid Mehmood & Arjumand Bano Soomro, 2022. "A Deep Learning-Based Model for Date Fruit Classification," Sustainability, MDPI, vol. 14(10), pages 1-16, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:6339-:d:821795
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/10/6339/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/10/6339/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Timmer, C. P., 1992. "Agriculture and economic development revisited," Agricultural Systems, Elsevier, vol. 40(1-3), pages 21-58.
    2. Samuel C. A. Pereira, 2021. "On the precision of information," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 30(3), pages 569-584, August.
    3. Anthony King, 2017. "Technology: The Future of Agriculture," Nature, Nature, vol. 544(7651), pages 21-23, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nasser Al-Habsi, 2025. "Date Palm ( Phoenix dactylifera L.) Fruit: Strategic Crop for Food Security, Nutritional Benefits, Postharvest Quality, and Valorization into Emerging Functional Products," Sustainability, MDPI, vol. 17(16), pages 1-42, August.
    2. Yang Chen & Xiaoyulong Chen & Jianwu Lin & Renyong Pan & Tengbao Cao & Jitong Cai & Dianzhi Yu & Tomislav Cernava & Xin Zhang, 2022. "DFCANet: A Novel Lightweight Convolutional Neural Network Model for Corn Disease Identification," Agriculture, MDPI, vol. 12(12), pages 1-22, November.
    3. Normaisharah Mamat & Mohd Fauzi Othman & Rawad Abdulghafor & Ali A. Alwan & Yonis Gulzar, 2023. "Enhancing Image Annotation Technique of Fruit Classification Using a Deep Learning Approach," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    4. Maged Mohammed & Ramasamy Srinivasagan & Ali Alzahrani & Nashi K. Alqahtani, 2023. "Machine-Learning-Based Spectroscopic Technique for Non-Destructive Estimation of Shelf Life and Quality of Fresh Fruits Packaged under Modified Atmospheres," Sustainability, MDPI, vol. 15(17), pages 1-24, August.
    5. Younés Noutfia & Ewa Ropelewska, 2022. "Comprehensive Characterization of Date Palm Fruit ‘Mejhoul’ ( Phoenix dactylifera L.) Using Image Analysis and Quality Attribute Measurements," Agriculture, MDPI, vol. 13(1), pages 1-12, December.
    6. Rui Ma & Jia Wang & Wei Zhao & Hongjie Guo & Dongnan Dai & Yuliang Yun & Li Li & Fengqi Hao & Jinqiang Bai & Dexin Ma, 2022. "Identification of Maize Seed Varieties Using MobileNetV2 with Improved Attention Mechanism CBAM," Agriculture, MDPI, vol. 13(1), pages 1-16, December.
    7. Shanxin Zhang & Hao Feng & Shaoyu Han & Zhengkai Shi & Haoran Xu & Yang Liu & Haikuan Feng & Chengquan Zhou & Jibo Yue, 2022. "Monitoring of Soybean Maturity Using UAV Remote Sensing and Deep Learning," Agriculture, MDPI, vol. 13(1), pages 1-21, December.
    8. Xinle Zhang & Jian Cui & Huanjun Liu & Yongqi Han & Hongfu Ai & Chang Dong & Jiaru Zhang & Yunxiang Chu, 2023. "Weed Identification in Soybean Seedling Stage Based on Optimized Faster R-CNN Algorithm," Agriculture, MDPI, vol. 13(1), pages 1-16, January.
    9. Lu Lu & Wei Liu & Wenbo Yang & Manyu Zhao & Tinghao Jiang, 2022. "Lightweight Corn Seed Disease Identification Method Based on Improved ShuffleNetV2," Agriculture, MDPI, vol. 12(11), pages 1-18, November.
    10. Sonam Aggarwal & Sheifali Gupta & Deepali Gupta & Yonis Gulzar & Sapna Juneja & Ali A. Alwan & Ali Nauman, 2023. "An Artificial Intelligence-Based Stacked Ensemble Approach for Prediction of Protein Subcellular Localization in Confocal Microscopy Images," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    11. Jiapeng Cui & Feng Tan, 2023. "Rice Plaque Detection and Identification Based on an Improved Convolutional Neural Network," Agriculture, MDPI, vol. 13(1), pages 1-15, January.
    12. Mahdieh Parsaeian & Mohammad Rahimi & Abbas Rohani & Shaneka S. Lawson, 2022. "Towards the Modeling and Prediction of the Yield of Oilseed Crops: A Multi-Machine Learning Approach," Agriculture, MDPI, vol. 12(10), pages 1-23, October.
    13. Rodrigo Cupertino Bernardes & André De Medeiros & Laercio da Silva & Leo Cantoni & Gustavo Ferreira Martins & Thiago Mastrangelo & Arthur Novikov & Clíssia Barboza Mastrangelo, 2022. "Deep-Learning Approach for Fusarium Head Blight Detection in Wheat Seeds Using Low-Cost Imaging Technology," Agriculture, MDPI, vol. 12(11), pages 1-14, October.
    14. Haixia Sun & Shujuan Zhang & Rui Ren & Liyang Su, 2022. "Maturity Classification of “Hupingzao” Jujubes with an Imbalanced Dataset Based on Improved MobileNet V2," Agriculture, MDPI, vol. 12(9), pages 1-16, August.
    15. Yonis Gulzar, 2023. "Fruit Image Classification Model Based on MobileNetV2 with Deep Transfer Learning Technique," Sustainability, MDPI, vol. 15(3), pages 1-14, January.
    16. Shahnawaz Ayoub & Yonis Gulzar & Jaloliddin Rustamov & Abdoh Jabbari & Faheem Ahmad Reegu & Sherzod Turaev, 2023. "Adversarial Approaches to Tackle Imbalanced Data in Machine Learning," Sustainability, MDPI, vol. 15(9), pages 1-17, April.
    17. Poonam Dhiman & Amandeep Kaur & V. R. Balasaraswathi & Yonis Gulzar & Ali A. Alwan & Yasir Hamid, 2023. "Image Acquisition, Preprocessing and Classification of Citrus Fruit Diseases: A Systematic Literature Review," Sustainability, MDPI, vol. 15(12), pages 1-23, June.
    18. Yonis Gulzar & Zeynep Ünal & Hakan Aktaş & Mohammad Shuaib Mir, 2023. "Harnessing the Power of Transfer Learning in Sunflower Disease Detection: A Comparative Study," Agriculture, MDPI, vol. 13(8), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alison Kennedy & Jessie Adams & Jeremy Dwyer & Muhammad Aziz Rahman & Susan Brumby, 2020. "Suicide in Rural Australia: Are Farming-Related Suicides Different?," IJERPH, MDPI, vol. 17(6), pages 1-13, March.
    2. Yaoyao Wang & Yuanpei Kuang, 2023. "Evaluation, Regional Disparities and Driving Mechanisms of High-Quality Agricultural Development in China," Sustainability, MDPI, vol. 15(7), pages 1-20, April.
    3. Amine Saddik & Rachid Latif & Abdelhafid El Ouardi & Mohammed I. Alghamdi & Mohamed Elhoseny, 2022. "Improving Sustainable Vegetation Indices Processing on Low-Cost Architectures," Sustainability, MDPI, vol. 14(5), pages 1-29, February.
    4. Thorsøe, Martin Hvarregaard & Noe, Egon Bjørnshave & Lamandé, Mathieu & Frelih-Larsen, Ana & Kjeldsen, Chris & Zandersen, Marianne & Schjønning, Per, 2019. "Sustainable soil management - Farmers’ perspectives on subsoil compaction and the opportunities and barriers for intervention," Land Use Policy, Elsevier, vol. 86(C), pages 427-437.
    5. Rübcke von Veltheim, Friedrich & Claussen, Frans & Heise, Heinke, 2020. "Autonomous Field Robots in Agriculture: A Qualitative Analysis of User Acceptance According to Different Agricultural Machinery Companies," 60th Annual Conference, Halle/ Saale, Germany, September 23-25, 2020 305587, German Association of Agricultural Economists (GEWISOLA).
    6. Hafiz Suliman Munawar & Hina Inam & Fahim Ullah & Siddra Qayyum & Abbas Z. Kouzani & M. A. Parvez Mahmud, 2021. "Towards Smart Healthcare: UAV-Based Optimized Path Planning for Delivering COVID-19 Self-Testing Kits Using Cutting Edge Technologies," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    7. Eirini Aivazidou & Naoum Tsolakis, 2023. "Transitioning towards human–robot synergy in agriculture: A systems thinking perspective," Systems Research and Behavioral Science, Wiley Blackwell, vol. 40(3), pages 536-551, May.
    8. Milyausha Lukyanova & Vitaliy Kovshov & Zariya Zalilova & Vasily Lukyanov & Irek Araslanbaev, 2021. "A systemic comparative economic approach efficiency of fodder production," Journal of Innovation and Entrepreneurship, Springer, vol. 10(1), pages 1-17, December.
    9. Rübcke von Veltheim, Friedrich & Claussen, Frans & Heise, Heinke, "undated". "Autonomous Field Robots in Agriculture: A Qualitative Analysis of User Acceptance According to Different Agricultural Machinery Companies," 60th Annual Conference, Halle/ Saale, Germany, September 23-25, 2020 305587, German Association of Agricultural Economists (GEWISOLA).
    10. Friedrich Rübcke von Veltheim & Heinke Heise, 2020. "The AgTech Startup Perspective to Farmers Ex Ante Acceptance Process of Autonomous Field Robots," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    11. Dashuai Wang & Sheng Xu & Zhuolin Li & Wujing Cao, 2022. "Analysis of the Influence of Parameters of a Spraying System Designed for UAV Application on the Spraying Quality Based on Box–Behnken Response Surface Method," Agriculture, MDPI, vol. 12(2), pages 1-14, January.
    12. Cui, Yuanyuan (Gina) & van Esch, Patrick & Das, Gopal & Jain, Shailendra, 2022. "“Surge price precision and political ideology”," Journal of Business Research, Elsevier, vol. 143(C), pages 214-224.
    13. Caterina Losacco & Gianluca Pugliese & Lucrezia Forte & Vincenzo Tufarelli & Aristide Maggiolino & Pasquale De Palo, 2025. "Digital Transition as a Driver for Sustainable Tailor-Made Farm Management: An Up-to-Date Overview on Precision Livestock Farming," Agriculture, MDPI, vol. 15(13), pages 1-36, June.
    14. Rashid, Shahidur & Cummings Jr., Ralph & Gulati, Ashok, 2007. "Grain Marketing Parastatals in Asia: Results from Six Case Studies," World Development, Elsevier, vol. 35(11), pages 1872-1888, November.
    15. Kitonsa, H. & Kruglikov, S. V., 2018. "Significance of drone technology for achievement of the United Nations sustainable development goals," R-Economy, Ural Federal University, Graduate School of Economics and Management, vol. 4(3), pages 115-120.
    16. Fairouz Mustafa & Suman Lodh & Monomita Nandy & Vikas Kumar, 2022. "Coupling of cryptocurrency trading with the sustainable environmental goals: Is it on the cards?," Business Strategy and the Environment, Wiley Blackwell, vol. 31(3), pages 1152-1168, March.
    17. Ciliberti, Stefano & Frascarelli, Angelo & Polenzani, Bianca & Brunori, Gianluca & Martino, Gaetano, 2024. "Digitalisation strategies in the agri-food system: The case of PDO Parmigiano Reggiano," Agricultural Systems, Elsevier, vol. 218(C).
    18. Jaehwi Seol & Yonghyun Park & Jeonghyeon Pak & Yuseung Jo & Giwan Lee & Yeongmin Kim & Chanyoung Ju & Ayoung Hong & Hyoung Il Son, 2024. "Human-Centered Robotic System for Agricultural Applications: Design, Development, and Field Evaluation," Agriculture, MDPI, vol. 14(11), pages 1-17, November.
    19. Timmer, C. Peter, 2000. "The macro dimensions of food security: economic growth, equitable distribution, and food price stability," Food Policy, Elsevier, vol. 25(3), pages 283-295, June.
    20. Kinlay Dorjee & Sumiter Broca & Prabhu Pingali, 2003. "Diversification in South Asian Agriculture: Trends and constraints," Working Papers 03-15, Agricultural and Development Economics Division of the Food and Agriculture Organization of the United Nations (FAO - ESA).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:6339-:d:821795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.