IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i8p4328-d535306.html
   My bibliography  Save this article

A Pathway for Sustainable Agriculture

Author

Listed:
  • Hadi A. AL-agele

    (Department of Biological and Ecological Engineering, College of Agricultural Science, Oregon State University, Corvallis, OR 97331, USA
    Department of Soil and Water Resource, College of Agriculture, Al-Qasim Green University, Al-Qasim District 964, Babylon 51013, Iraq)

  • Lloyd Nackley

    (North Willamette Research and Extension Center, Department of Horticulture, College of Agricultural Science, Oregon State University, Aurora, OR 97201, USA)

  • Chad W. Higgins

    (Department of Biological and Ecological Engineering, College of Agricultural Science, Oregon State University, Corvallis, OR 97331, USA)

Abstract

Expanding populations, the impacts of climate change, availability of arable land, and availability of water for irrigation collectively strain the agricultural system. To keep pace and adapt to these challenges, food producers may adopt unsustainable practices that may ultimately intensify the strain. What is a course of technological evolution and adoption that can break this cycle? In this paper we explore a set of technologies and food production scenarios with a new, reduced-order model. First the model is developed. The model combines limitations in the sustainable water supply, agricultural productivity as a function of intensification, and rising food demands. Model inputs are derived from the literature and historical records. Monte Carlo simulation runs of the model are used to explore the potential of existing and future technologies to bring us ever closer to a more sustainable future instead of ever farther. This is the concept of a moving sustainability horizon (the year in the future where sustainability can be achieved with current technological progress if demand remains constant). The sustainability gap is the number of years between the present and the sustainability horizon. As demand increases, the sustainability horizon moves farther into the future. As technology improves and productivity increases, the sustainability horizon is closer to the present. Sustainability, therefore, is achieved when the sustainability horizon collides with the present, closing the sustainability gap to zero. We find one pathway for water management technology adoption and innovation that closes the sustainability gap within the reduced-order model’s outputs. In this scenario, micro-irrigation adoption, minimal climate change impacts, reduced food waste, and additional transformative innovations such as smart greenhouses and agrivoltaic systems are collectively needed. The model shows that, in the absence of these changes, and continuing along our current course, the productivity of the agricultural system would become insufficient in the decade following 2050.

Suggested Citation

  • Hadi A. AL-agele & Lloyd Nackley & Chad W. Higgins, 2021. "A Pathway for Sustainable Agriculture," Sustainability, MDPI, vol. 13(8), pages 1-14, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4328-:d:535306
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/8/4328/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/8/4328/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Jing & Hertel, Thomas W. & Lammers, Richard & Prusevich, Alexander & Baldos, Uris Lantz C. & Grogan, Danielle S. & Frolking, Steve, 2017. "Achieving Sustainable Irrigation Water Withdrawals: Global Impacts on Food Security and Land Use," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258118, Agricultural and Applied Economics Association.
    2. Ibragimov, Nazirbay & Evett, Steven R. & Esanbekov, Yusupbek & Kamilov, Bakhtiyor S. & Mirzaev, Lutfullo & Lamers, John P.A., 2007. "Water use efficiency of irrigated cotton in Uzbekistan under drip and furrow irrigation," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 112-120, May.
    3. Hadi A. AL-agele & Lloyd Nackley & Chad Higgins, 2021. "Testing Novel New Drip Emitter with Variable Diameters for a Variable Rate Drip Irrigation," Agriculture, MDPI, vol. 11(2), pages 1-8, January.
    4. Hadi A. AL-agele & Kyle Proctor & Ganti Murthy & Chad Higgins, 2021. "A Case Study of Tomato ( Solanum lycopersicon var. Legend ) Production and Water Productivity in Agrivoltaic Systems," Sustainability, MDPI, vol. 13(5), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Yao & Abudureheman Halike & Qianqian Wei & Hua Tang & Buweiayixiemu Tuheti, 2022. "Research on Coupling and Coordination of Agro-Ecological and Agricultural Economic Systems in the Ebinur Lake Basin," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    2. María J. López-Serrano & Fida Hussain Lakho & Stijn W.H. Van Hulle & Ana Batlles-delaFuente, 2023. "Life cycle cost assessment and economic analysis of a decentralized wastewater treatment to achieve water sustainability within the framework of circular economy," Oeconomia Copernicana, Institute of Economic Research, vol. 14(1), pages 103-133, March.
    3. Dmitry A. Ruban & Natalia N. Yashalova, 2022. "Corporate Web Positioning as a Strategic Communication Tool in Agriculture," Agriculture, MDPI, vol. 12(8), pages 1-16, July.
    4. Shuxing Xiao & Zuxin He & Weikun Zhang & Xiaoming Qin, 2022. "The Agricultural Green Production following the Technological Progress: Evidence from China," IJERPH, MDPI, vol. 19(16), pages 1-16, August.
    5. Véronique Ancey & Jean-Michel Sourisseau & Christian Corniaux, 2022. "Do We Really Have to Scale Up Local Approaches? A Reflection on Scalability, Based upon a Territorial Prospective at the Burkina Faso–Togo Border," Sustainability, MDPI, vol. 14(17), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    2. Wuliyasu Bai & Liang Yan & Jingbo Liang & Long Zhang, 2022. "Mapping Knowledge Domain on Economic Growth and Water Sustainability: A Scientometric Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4137-4159, September.
    3. Kenjabaev, Shavkat & Forkutsa, I. & Bach, M. & Frede, H.-G., 2013. "Performance evaluation of the BUDGET model in simulating cotton and wheat yield and soil moisture in Fergana valley," International Conference and Young Researchers Forum - Natural Resource Use in Central Asia: Institutional Challenges and the Contribution of Capacity Building 159114, University of Giessen (JLU Giessen), Center for International Development and Environmental Research.
    4. Ping Wang & Zhenyong Zhao & Lei Wang & Changyan Tian, 2021. "Comparison of Efficiency-Enhanced Management and Conventional Management of Irrigation and Nitrogen Fertilization in Cotton Fields of Northwestern China," Agriculture, MDPI, vol. 11(11), pages 1-11, November.
    5. Fan, Yubing & McCann, Laura M., 2017. "Farmers’ Adoption of Pressure Irrigation Systems and Scientific Scheduling Practices: An Application of Multilevel Models," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258458, Agricultural and Applied Economics Association.
    6. Liang, Hao & Lv, Haofeng & Batchelor, William D. & Lian, Xiaojuan & Wang, Zhengxiang & Lin, Shan & Hu, Kelin, 2020. "Simulating nitrate and DON leaching to optimize water and N management practices for greenhouse vegetable production systems," Agricultural Water Management, Elsevier, vol. 241(C).
    7. Pongspikul, Tayatorn & McCann, Laura M., 2020. "Farmers’ Adoption of Pressure Irrigation Systems: The Case of Cotton Producers in the Southeastern versus Southwestern U.S," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304332, Agricultural and Applied Economics Association.
    8. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    9. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Wang, Yanli & Li, Yuepeng & Sun, Xin & Yang, Ling & Zhang, Fucang, 2021. "Water productivity and seed cotton yield in response to deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    10. Sampathkumar, T. & Pandian, B.J. & Rangaswamy, M.V. & Manickasundaram, P. & Jeyakumar, P., 2013. "Influence of deficit irrigation on growth, yield and yield parameters of cotton–maize cropping sequence," Agricultural Water Management, Elsevier, vol. 130(C), pages 90-102.
    11. Haqiqi, Iman & Bowling, Laura C. & Jame, Sadia & Hertel, Thomas W. & Baldos, Uris Lantz C. & Liu, Jing, 2019. "Global Drivers of Land and Water Sustainability Stresses at Mid-Century," 2019 Annual Meeting, July 21-23, Atlanta, Georgia 291101, Agricultural and Applied Economics Association.
    12. Qun Liu & Zhaoping Yang & Cuirong Wang & Fang Han, 2019. "Temporal-Spatial Variations and Influencing Factor of Land Use Change in Xinjiang, Central Asia, from 1995 to 2015," Sustainability, MDPI, vol. 11(3), pages 1-14, January.
    13. Haqiqi, Iman, 2022. "Implications of Climate Policy for Local Agriculture and Irrigation," Conference papers 333449, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    14. Baldos, Uris Lantz & Kucharik, Christopher & Liu, Jing & Hertel, Thomas & Ramankutty, Navin & Larrisa, Jarvis, 2018. "Using Targeted Policies to Manage Nitrogen for Sustainable Agriculture in the US," Conference papers 330183, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    15. Waqas, Muhammad Sohail & Cheema, Muhammad Jehanzeb Masud & Hussain, Saddam & Ullah, Muhammad Kaleem & Iqbal, Muhammad Mazhar, 2021. "Delayed irrigation: An approach to enhance crop water productivity and to investigate its effects on potato yield and growth parameters," Agricultural Water Management, Elsevier, vol. 245(C).
    16. Rakhmatullaev, S. & Huneau, F. & Kazbekov, Jusipbek & Le Coustumer, P., 2008. "Groundwater resources and uses in Central Asia: case study of Amu Darya River Basin," Conference Papers h041955, International Water Management Institute.
    17. Johnson, Justin Andrew & Baldos, Uris Lantz & Hertel, Thomas & Nootenboom, Chris & Polasky, Stephen & Roxburgh, Toby, 2020. "Global Futures: Modelling the global economic impacts of environmental change to support policy-making," Technical Papers 323944, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    18. Jing Liu & Laura Bowling & Christopher Kucharik & Sadia Jame & Uris Baldos & Larissa Jarvis & Navin Ramankutty & Thomas Hertel, 2022. "Multi-scale Analysis of Nitrogen Loss Mitigation in the US Corn Belt," Papers 2206.07596, arXiv.org.
    19. Ünlü, Mustafa & Kanber, RIza & Koç, D. Levent & Tekin, Servet & Kapur, Burçak, 2011. "Effects of deficit irrigation on the yield and yield components of drip irrigated cotton in a mediterranean environment," Agricultural Water Management, Elsevier, vol. 98(4), pages 597-605, February.
    20. Liao, Renkuan & Wu, Wenyong & Hu, Yaqi & Xu, Di & Huang, Qiannan & Wang, Shiyu, 2019. "Micro-irrigation strategies to improve water-use efficiency of cherry trees in Northern China," Agricultural Water Management, Elsevier, vol. 221(C), pages 388-396.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4328-:d:535306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.