IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Performance evaluation of the BUDGET model in simulating cotton and wheat yield and soil moisture in Fergana valley

Listed author(s):
  • Kenjabaev, Shavkat
  • Forkutsa, I.
  • Bach, M.
  • Frede, H.-G.
Registered author(s):

    Cotton (Gossypium hirsutum L.) and wheat (Triticum aestivum L.) are major crops grown in Uzbekistan and water shortage is considered as the main limiting factor for crop growth as well as sustainable economic development. The objective of this study was to adapt and test the ability of the soil water balance model BUDGET (ver. 6.2) to simulate cotton as well as wheat yield and soil water content under current agronomic practices in the Fergana Valley. Crop yield and soil moisture content data, collected and measured from sites in 2010 and 2011, were compared with model simulations. Results showed that the BUDGET can be used to predict cotton yield and soil water content with acceptable accuracy using the minimum approach. However, predicted wheat yield was high compared to the observed and reported yield. Overall, relationship between the observed and predicted cotton and wheat yield for both sites combined produced R2 of 0.91 and 0.15, RMSE of 0.24 and 1.64 t ha−1, relative Nash-Sutcliffe efficiency (Erel) of 0.71 and -5.68 and index of agreement (d) of 0.48 and -0.54, respectively. Similarly, comparison of the observed and simulated soil moisture contents at the top 0-30 cm soil layer and soil water contents in 90 cm profile yielded R2 of 0.88 and 0.71-0.88, RMSE of 2.74 %vol. and 21.4-28.7 mm, Erel of 0.87 and 0.53-0.81, respectively and d around 1.0. Consequently, the BUDGET can be a valuable tool for simulating both cotton yield and soil water content, particularly considering the fact that the model requires relatively minimal input data. Predicted soil water balance can be used to improve current practice of irrigation water management, whereas simulated soil moisture content can be used to estimate capillary rise from groundwater in the UPFLOW model. However, performance of the model has to be evaluated under a wider range of agro-climatic and soil conditions in the future.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by University of Giessen (JLU Giessen), Center for International Development and Environmental Research in its series International Conference and Young Researchers Forum - Natural Resource Use in Central Asia: Institutional Challenges and the Contribution of Capacity Building with number 159114.

    in new window

    Date of creation: 01 Oct 2013
    Handle: RePEc:ags:ugidic:159114
    Contact details of provider: Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Stulina, G. & Cameira, M.R. & Pereira, L.S., 2005. "Using RZWQM to search improved practices for irrigated maize in Fergana, Uzbekistan," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 263-281, August.
    2. Kazbekov, Jusipbek & Abdullaev, Iskandar & Manthrithilake, Herath & Qureshi, Asad & Jumaboev, Kakhramon, 2009. "Evaluating planning and delivery performance of Water User Associations (WUAs) in Osh Province, Kyrgyzstan," Agricultural Water Management, Elsevier, vol. 96(8), pages 1259-1267, August.
    3. Horst, M.G. & Shamutalov, S.S. & Pereira, L.S. & Goncalves, J.M., 2005. "Field assessment of the water saving potential with furrow irrigation in Fergana, Aral Sea basin," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 210-231, August.
    4. Raes, Dirk & Geerts, Sam & Kipkorir, Emmanuel & Wellens, Joost & Sahli, Ali, 2006. "Simulation of yield decline as a result of water stress with a robust soil water balance model," Agricultural Water Management, Elsevier, vol. 81(3), pages 335-357, March.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:ags:ugidic:159114. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.