IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Irrigation scheduling strategies for cotton to cope with water scarcity in the Fergana Valley, Central Asia

Listed author(s):
  • Pereira, L.S.
  • Paredes, P.
  • Sholpankulov, E.D.
  • Inchenkova, O.P.
  • Teodoro, P.R.
  • Horst, M.G.
Registered author(s):

    The Central Asian countries face high water scarcity due to aridity and desertification but excess water is often applied to the main irrigated crops. This over-irrigation contributes to aggravate water scarcity problems. Improved water saving irrigation is therefore required, mainly through appropriate irrigation scheduling. To provide for it, after being previously calibrated and validated for cotton in the Fergana region, the irrigation scheduling simulation model ISAREG was explored to simulate improved irrigation scheduling alternatives. Results show that using the present irrigation scheduling a large part of the applied water, averaging 20%, percolates out of the root zone. Several irrigation strategies were analyzed, including full irrigation and various levels of deficit irrigation. The analysis focused a three-year period when experiments for calibration and validation of the model were carried out, and a longer period of 33 years that provided for an analysis considering the probabilities of the demand for irrigation water. The first concerned a wet period while the second includes a variety of climatic demand conditions that provided for analyzing alternative schedules for average, high and very high climatic demand. Results have shown the importance of the groundwater contribution, mainly when deficit irrigation is applied. Analyzing several deficit irrigation strategies through the respective potential water saving, relative yield losses, water productivity and economic water productivity, it could be concluded that relative mild deficits may be adopted. Contrarily, the adoption of high water deficit that produce high water savings would lead to yield losses that may be economically not acceptable.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Agricultural Water Management.

    Volume (Year): 96 (2009)
    Issue (Month): 5 (May)
    Pages: 723-735

    in new window

    Handle: RePEc:eee:agiwat:v:96:y:2009:i:5:p:723-735
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Ertek, Ahmet & Kanber, Riza, 2003. "Effects of different drip irrigation programs on the boll number and shedding percentage and yield of cotton," Agricultural Water Management, Elsevier, vol. 60(1), pages 1-11, April.
    2. Dagdelen, Necdet & Yilmaz, Ersel & Sezgin, Fuat & Gurbuz, Talih, 2006. "Water-yield relation and water use efficiency of cotton (Gossypium hirsutum L.) and second crop corn (Zea mays L.) in western Turkey," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 63-85, April.
    3. Fortes, P.S. & Platonov, A.E. & Pereira, L.S., 2005. "GISAREG--A GIS based irrigation scheduling simulation model to support improved water use," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 159-179, August.
    4. Falkenberg, Nyland R. & Piccinni, Giovanni & Cothren, J. Tom & Leskovar, Daniel I. & Rush, Charlie M., 2007. "Remote sensing of biotic and abiotic stress for irrigation management of cotton," Agricultural Water Management, Elsevier, vol. 87(1), pages 23-31, January.
    5. Yazar, Attila & Sezen, S. Metin & Sesveren, Sertan, 2002. "LEPA and trickle irrigation of cotton in the Southeast Anatolia Project (GAP) area in Turkey," Agricultural Water Management, Elsevier, vol. 54(3), pages 189-203, April.
    6. Horst, M.G. & Shamutalov, S.S. & Pereira, L.S. & Goncalves, J.M., 2005. "Field assessment of the water saving potential with furrow irrigation in Fergana, Aral Sea basin," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 210-231, August.
    7. Liu, Y. & Pereira, L.S. & Fernando, R.M., 2006. "Fluxes through the bottom boundary of the root zone in silty soils: Parametric approaches to estimate groundwater contribution and percolation," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 27-40, July.
    8. Karam, Fadi & Lahoud, Rafic & Masaad, Randa & Daccache, Andre & Mounzer, Oussama & Rouphael, Youssef, 2006. "Water use and lint yield response of drip irrigated cotton to the length of irrigation season," Agricultural Water Management, Elsevier, vol. 85(3), pages 287-295, October.
    9. DeTar, W.R., 2008. "Yield and growth characteristics for cotton under various irrigation regimes on sandy soil," Agricultural Water Management, Elsevier, vol. 95(1), pages 69-76, January.
    10. Horst, M.G. & Shamutalov, S.S. & Goncalves, J.M. & Pereira, L.S., 2007. "Assessing impacts of surge-flow irrigation on water saving and productivity of cotton," Agricultural Water Management, Elsevier, vol. 87(2), pages 115-127, January.
    11. Pereira, Luis Santos & Oweis, Theib & Zairi, Abdelaziz, 2002. "Irrigation management under water scarcity," Agricultural Water Management, Elsevier, vol. 57(3), pages 175-206, December.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:96:y:2009:i:5:p:723-735. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.