IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i16p10327-d892515.html
   My bibliography  Save this article

Research on Coupling and Coordination of Agro-Ecological and Agricultural Economic Systems in the Ebinur Lake Basin

Author

Listed:
  • Lei Yao

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830017, China)

  • Abudureheman Halike

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830017, China
    Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Xinjiang University, Urumqi 830017, China)

  • Qianqian Wei

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830017, China)

  • Hua Tang

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830017, China)

  • Buweiayixiemu Tuheti

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830017, China)

Abstract

The Ebinur Lake Basin is an important ecological area in China. The sustainable development of the basin is imperative, particularly the coupling and coordination between the agro-ecological environment and economy. Six counties in the Ebinur Lake Basin were studied and CRITIC—the entropy weight method used in the construction of regional agro-ecosystem and economic evaluation index systems for 2001–2021. The entropy weight method and coupling coordination were used to evaluate and analyze the systems. The results indicate that: (1) The integrated index grew slowly, increasing from 0.15 in 2000 to 0.18 in 2020. The agro-economic integrated index grew rapidly, increasing from 0.08 in 2000 to 0.25 in 2020. (2) High quality coupling was achieved from 2000 to 2010, with 50% superior coupling in 2010, which then decreased to reach 17% in 2020. (3) The agro-ecological–economic system coupling was high at 0.8; however, the coordination degree was low, at 0.36. (4) Most counties suffered from economic lag before 2010, with an average U e / U s of 0.93 in 2010. Ecological lag has dominated since 2010, and the average U e / U s value reached 1.48 in 2015. Coupling and coordinating the agro-ecological and economic systems is important for the sustainable development of local agriculture.

Suggested Citation

  • Lei Yao & Abudureheman Halike & Qianqian Wei & Hua Tang & Buweiayixiemu Tuheti, 2022. "Research on Coupling and Coordination of Agro-Ecological and Agricultural Economic Systems in the Ebinur Lake Basin," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10327-:d:892515
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/16/10327/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/16/10327/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lin Zhu & Mingying Yang & Wenzhuo Li & Heping Liao & Han Huang, 2021. "The Spatial–Temporal Changes of the Coupling Relationship among Agricultural Labor Force, Agricultural Economy, and Farmland in Chongqing," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    2. Liejia Huang & Peng Yang & Boqing Zhang & Weiyan Hu, 2021. "Spatio-Temporal Coupling Characteristics and the Driving Mechanism of Population-Land-Industry Urbanization in the Yangtze River Economic Belt," Land, MDPI, vol. 10(4), pages 1-17, April.
    3. Michael Blakeney, 2022. "Agricultural Innovation and Sustainable Development," Sustainability, MDPI, vol. 14(5), pages 1-6, February.
    4. Zhou, Yang & Li, Xunhuan & Liu, Yansui, 2021. "Cultivated land protection and rational use in China," Land Use Policy, Elsevier, vol. 106(C).
    5. Xiuping Yang & Dacheng Zhang & Qiqi Jia & Wentao Zhang & Tianyou Wang, 2019. "Exploring the Dynamic Coupling Relationship between Agricultural Economy and Agro-Ecological Environment in Semi-Arid Areas: A Case Study of Yulin, China," Sustainability, MDPI, vol. 11(8), pages 1-17, April.
    6. Hadi A. AL-agele & Lloyd Nackley & Chad W. Higgins, 2021. "A Pathway for Sustainable Agriculture," Sustainability, MDPI, vol. 13(8), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhongwu Zhang & Huimin Li & Yongjian Cao, 2022. "Research on the Coordinated Development of Economic Development and Ecological Environment of Nine Provinces (Regions) in the Yellow River Basin," Sustainability, MDPI, vol. 14(20), pages 1-14, October.
    2. Geng, Yuqing & Liu, Liwen & Chen, Lingyan, 2023. "Rural revitalization of China: A new framework, measurement and forecast," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kui Liu & Jian Wang & Xiang Kang & Jingming Liu & Zheyi Xia & Kai Du & Xuexin Zhu, 2022. "Spatio-Temporal Analysis of Population-Land-Economic Urbanization and Its Impact on Urban Carbon Emissions in Shandong Province, China," Land, MDPI, vol. 11(2), pages 1-20, February.
    2. Xiaowei Yao & Ting Luo & Yingjun Xu & Wanxu Chen & Jie Zeng, 2022. "Prediction of Spatiotemporal Changes in Sloping Cropland in the Middle Reaches of the Yangtze River Region under Different Scenarios," IJERPH, MDPI, vol. 20(1), pages 1-22, December.
    3. Yang Sheng & Weizhong Liu & Hailiang Xu & Xianchao Gao, 2021. "The Spatial Distribution Characteristics of the Cultivated Land Quality in the Diluvial Fan Terrain of the Arid Region: A Case Study of Jimsar County, Xinjiang, China," Land, MDPI, vol. 10(9), pages 1-29, August.
    4. Zhang, Bangbang & Li, Xian & Chen, Haibin & Niu, Wenhao & Kong, Xiangbin & Yu, Qiang & Zhao, Minjuan & Xia, Xianli, 2022. "Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity," Land Use Policy, Elsevier, vol. 117(C).
    5. Liu, Yansui & Zhou, Yang, 2021. "Reflections on China's food security and land use policy under rapid urbanization," Land Use Policy, Elsevier, vol. 109(C).
    6. Sun, Xueqing & Xiang, Pengcheng & Cong, Kexin, 2023. "Research on early warning and control measures for arable land resource security," Land Use Policy, Elsevier, vol. 128(C).
    7. Li, Xiaoliang & Wu, Kening & Yang, Qijun & Hao, Shiheng & Feng, Zhe & Ma, Jinliang, 2023. "Quantitative assessment of cultivated land use intensity in Heilongjiang Province, China, 2001–2015," Land Use Policy, Elsevier, vol. 125(C).
    8. Ning He & Wenxian Guo & Hongxiang Wang & Long Yu & Siyuan Cheng & Lintong Huang & Xuyang Jiao & Wenxiong Chen & Haotong Zhou, 2023. "Temporal and Spatial Variations in Landscape Habitat Quality under Multiple Land-Use/Land-Cover Scenarios Based on the PLUS-InVEST Model in the Yangtze River Basin, China," Land, MDPI, vol. 12(7), pages 1-19, July.
    9. Lingyan Huang & Shanshan Xiang & Jianzhuang Zheng, 2022. "Fine-Scale Monitoring of Industrial Land and Its Intra-Structure Using Remote Sensing Images and POIs in the Hangzhou Bay Urban Agglomeration, China," IJERPH, MDPI, vol. 20(1), pages 1-21, December.
    10. Weixuan Chen & Ali Cheshmehzangi & Eugenio Mangi & Timothy Heath, 2022. "Implementations of China’s New-Type Urbanisation: A Comparative Analysis between Targets and Practices of Key Elements’ Policies," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
    11. Song, Xiaoqing & Wang, Xiong & Hu, Shougeng & Xiao, Renbin & Scheffran, Jürgen, 2022. "Functional transition of cultivated ecosystems: Underlying mechanisms and policy implications in China," Land Use Policy, Elsevier, vol. 119(C).
    12. Yirui Han & Qinqin Pan & Yuee Cao & Jianhong Zhang & Jiaxuan Yuan & Borui Li & Saiqiang Li & Renfeng Ma & Xu Luo & Longbin Sha & Xiaodong Yang, 2022. "Estimation of Grain Crop Yields after Returning the Illegal Nurseries and Orchards to Cultivated Land in the Yangtze River Delta Region," Land, MDPI, vol. 11(11), pages 1-19, November.
    13. Xupeng Zhang & Danling Chen & Xinhai Lu & Yifeng Tang & Bin Jiang, 2021. "Interaction between Land Financing Strategy and the Implementation Deviation of Local Governments’ Cultivated Land Protection Policy in China," Land, MDPI, vol. 10(8), pages 1-16, July.
    14. Sentao Wu & Xin Deng & Yanbin Qi, 2022. "Factors Driving Coordinated Development of Urban Green Economy: An Empirical Evidence from the Chengdu-Chongqing Economic Circle," IJERPH, MDPI, vol. 19(10), pages 1-20, May.
    15. Shuai Xie & Guanyi Yin & Wei Wei & Qingzhi Sun & Zhan Zhang, 2022. "Spatial–Temporal Change in Paddy Field and Dryland in Different Topographic Gradients: A Case Study of China during 1990–2020," Land, MDPI, vol. 11(10), pages 1-20, October.
    16. Biao Zhang & Dian Shao & Zhonghu Zhang, 2022. "Spatio-Temporal Evolution Dynamic, Effect and Governance Policy of Construction Land Use in Urban Agglomeration: Case Study of Yangtze River Delta, China," Sustainability, MDPI, vol. 14(10), pages 1-36, May.
    17. Huang, Xinxin & Wang, Haijun & Xiao, Fentao, 2022. "Simulating urban growth affected by national and regional land use policies: Case study from Wuhan, China," Land Use Policy, Elsevier, vol. 112(C).
    18. Dang, Yuxuan & Zhao, Zhenting & Kong, Xiangbin & Lei, Ming & Liao, Yubo & Xie, Zhen & Song, Wei, 2023. "Discerning the process of cultivated land governance transition in China since the reform and opening-up-- Based on the multiple streams framework," Land Use Policy, Elsevier, vol. 133(C).
    19. Zhiyuan Zhu & Zhenzhong Dai & Shilin Li & Yongzhong Feng, 2022. "Spatiotemporal Evolution of Non-Grain Production of Cultivated Land and Its Underlying Factors in China," IJERPH, MDPI, vol. 19(13), pages 1-15, July.
    20. Mengba Liu & Anlu Zhang & Xiong Zhang & Yanfei Xiong, 2022. "Research on the Game Mechanism of Cultivated Land Ecological Compensation Standards Determination: Based on the Empirical Analysis of the Yangtze River Economic Belt, China," Land, MDPI, vol. 11(9), pages 1-29, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10327-:d:892515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.