IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i7p3636-d523809.html
   My bibliography  Save this article

The Renewable Energy Production Capability of Settlements to Meet Local Electricity and Transport Energy Demands

Author

Listed:
  • Balázs Kulcsár

    (Faculty of Engineering, University of Debrecen, H-4028 Debrecen, Hungary)

  • Tamás Mankovits

    (Faculty of Engineering, University of Debrecen, H-4028 Debrecen, Hungary)

  • Piroska Gyöngyi Ailer

    (Faculty of Engineering, University of Debrecen, H-4028 Debrecen, Hungary)

Abstract

In addition to the examination of electric power from local renewables, this study has sought the answer to the question of what proportion of vehicles are fueled by environmentally friendly energy saving technologies in the vehicle fleets of Hungarian settlements. Further, the study attempts to shed light on the self-sufficiency of Hungarian settlements with respect to the electricity and transport segments. In our assessments, the performance of small-scale household power plants (SSHPPs) utilizing local renewable energy sources, and small-scale power plants with installed capacities under 0.5 MW, was taken into account, as were the proportions of vehicles operating with partly or completely clean energy sources in the vehicle fleets of the individual settlements. Finally, the composition of the vehicle fleet has been examined in the light of the quantities of renewable electricity generated in the individual settlements, in order to consider whether these settlements are capable of covering the energy needs of their vehicle stocks from local sources. In the light of the results, the changes generated by the incentives and investments introduced over the past ten years can be established and subsequently, the energy policy needs in the future can be assessed. Our study has incorporated energy geography and settlement geography aspects.

Suggested Citation

  • Balázs Kulcsár & Tamás Mankovits & Piroska Gyöngyi Ailer, 2021. "The Renewable Energy Production Capability of Settlements to Meet Local Electricity and Transport Energy Demands," Sustainability, MDPI, vol. 13(7), pages 1-21, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:3636-:d:523809
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/7/3636/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/7/3636/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lund, H., 2006. "Large-scale integration of optimal combinations of PV, wind and wave power into the electricity supply," Renewable Energy, Elsevier, vol. 31(4), pages 503-515.
    2. Sir Nicholas Stern, 2006. "What is the Economics of Climate Change?," World Economics, World Economics, 1 Ivory Square, Plantation Wharf, London, United Kingdom, SW11 3UE, vol. 7(2), pages 1-10, April.
    3. Dallinger, David & Wietschel, Martin, 2012. "Grid integration of intermittent renewable energy sources using price-responsive plug-in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3370-3382.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Islam, Moinul & Kotani, Koji & Managi, Shunsuke, 2016. "Climate perception and flood mitigation cooperation: A Bangladesh case study," Economic Analysis and Policy, Elsevier, vol. 49(C), pages 117-133.
    3. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    4. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    5. Moinul Islam & Koji Kotani, 2014. "Perceptions to climatic changes and cooperative attitudes toward flood protection in Bangladesh," Working Papers EMS_2014_10, Research Institute, International University of Japan.
    6. Fusco, Francesco & Nolan, Gary & Ringwood, John V., 2010. "Variability reduction through optimal combination of wind/wave resources – An Irish case study," Energy, Elsevier, vol. 35(1), pages 314-325.
    7. Poria Astero & Bong Jun Choi & Hao Liang & Lennart Söder, 2017. "Transactive Demand Side Management Programs in Smart Grids with High Penetration of EVs," Energies, MDPI, vol. 10(10), pages 1-18, October.
    8. Jean Charles Hourcade & Michel Aglietta & Baptiste Perrissin-Fabert, 2014. "Transition to a Low-Carbon society and sustainable economic recovery, a monetary-based financial device," Post-Print hal-01692593, HAL.
    9. Nayak-Luke, Richard & Bañares-Alcántara, René & Collier, Sam, 2021. "Quantifying network flexibility requirements in terms of energy storage," Renewable Energy, Elsevier, vol. 167(C), pages 869-882.
    10. E. Carina H. Keskitalo & Sirkku Juhola & Lisa Westerhoff, 2012. "Climate change as governmentality: technologies of government for adaptation in three European countries," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 55(4), pages 435-452, July.
    11. Pérez-Navarro, A. & Alfonso, D. & Álvarez, C. & Ibáñez, F. & Sánchez, C. & Segura, I., 2010. "Hybrid biomass-wind power plant for reliable energy generation," Renewable Energy, Elsevier, vol. 35(7), pages 1436-1443.
    12. Jonathan Portes & Simon Wren-Lewis, 2015. "Issues in the Design of Fiscal Policy Rules," Manchester School, University of Manchester, vol. 83, pages 56-86, September.
    13. Banister, David, 2011. "Cities, mobility and climate change," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1538-1546.
    14. Caroline Ignell & Peter Davies & Cecilia Lundholm, 2013. "Swedish Upper Secondary School Students’ Conceptions of Negative Environmental Impact and Pricing," Sustainability, MDPI, vol. 5(3), pages 1-15, March.
    15. Ajaz Ahmed & Aneel Salman, 2012. "Clean Development Mechanism (CDM) Business in Pakistan: Perceptions and Realities," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 51(4), pages 303-316.
    16. Martin Larsson, 2017. "EU Emissions Trading: Policy-Induced Innovation, or Business as Usual? Findings from Company Case Studies in the Republic of Croatia," Working Papers 1705, The Institute of Economics, Zagreb.
    17. Le, Ngoc Anh & Bhattacharyya, Subhes C., 2011. "Integration of wind power into the British system in 2020," Energy, Elsevier, vol. 36(10), pages 5975-5983.
    18. Danish, & Baloch, Muhammad Awais & Wang, Bo, 2019. "Analyzing the role of governance in CO2 emissions mitigation: The BRICS experience," Structural Change and Economic Dynamics, Elsevier, vol. 51(C), pages 119-125.
    19. Krajacic, Goran & Duic, Neven & Carvalho, Maria da Graça, 2011. "How to achieve a 100% RES electricity supply for Portugal?," Applied Energy, Elsevier, vol. 88(2), pages 508-517, February.
    20. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2014. "Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong," Renewable Energy, Elsevier, vol. 69(C), pages 7-15.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:3636-:d:523809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.