IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i6p3500-d521687.html
   My bibliography  Save this article

Biomass Content in Scrap Tires and Its Use as Sustainable Energy Resource: A CO 2 Mitigation Assessment

Author

Listed:
  • Pedro Mora

    (ETSI Minas y Energía, Universidad Politécnica de Madrid, Ríos Rosas 21, 28003 Madrid, Spain)

  • Arturo Alarcón

    (Instituto Español del Cemento y sus Aplicaciones, IECA, C/José Abascal 53. 1°, 28003 Madrid, Spain)

  • Laura Sánchez-Martín

    (ETSI Minas y Energía, Universidad Politécnica de Madrid, Ríos Rosas 21, 28003 Madrid, Spain)

  • Bernardo Llamas

    (ETSI Minas y Energía, Universidad Politécnica de Madrid, Ríos Rosas 21, 28003 Madrid, Spain)

Abstract

This project aims to present a methodology to establish the biomass content of unused tires as a typical fuel in cement factories. To this end, between 2011–2016 samples were collected every 2 years (four surveys) to assess natural and synthetic rubber in scrap tires through the thermodynamic analysis. Ninety-six samples were used in the study, 803.6 tonnes of scrap tires, as fuel. Knowing the Spanish vehicle fleet and considering undifferentiated tires, it is possible to predict the biomass content. The methodology has also been evaluated taking into consideration mono-brand samples. The simplicity of the methodology makes it possible to apply it in different regions and countries. New materials included in current and future tires will require constant samples and an assessment of the formulae state. Lastly, the biomass content in non-conventional fuels and its use in the cement sector will reduce CO 2 emissions in said sector, with significant economic implications for it is regulated by the 2003/87/EC Directive, with up to 2792.91 tonnes of CO 2 reductions.

Suggested Citation

  • Pedro Mora & Arturo Alarcón & Laura Sánchez-Martín & Bernardo Llamas, 2021. "Biomass Content in Scrap Tires and Its Use as Sustainable Energy Resource: A CO 2 Mitigation Assessment," Sustainability, MDPI, vol. 13(6), pages 1-12, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3500-:d:521687
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/6/3500/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/6/3500/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marta G. Plaza & Sergio Martínez & Fernando Rubiera, 2020. "CO 2 Capture, Use, and Storage in the Cement Industry: State of the Art and Expectations," Energies, MDPI, vol. 13(21), pages 1-28, October.
    2. Zhang, Qingyu & Tian, Weili & Zheng, Yingyue & Zhang, Lili, 2010. "Fuel consumption from vehicles of China until 2030 in energy scenarios," Energy Policy, Elsevier, vol. 38(11), pages 6860-6867, November.
    3. Lamas, Wendell de Queiroz & Palau, Jose Carlos Fortes & Camargo, Jose Rubens de, 2013. "Waste materials co-processing in cement industry: Ecological efficiency of waste reuse," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 200-207.
    4. Machin, Einara Blanco & Pedroso, Daniel Travieso & de Carvalho, João Andrade, 2017. "Energetic valorization of waste tires," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 306-315.
    5. Wang, Ruikun & Zhao, Zhenghui & Liu, Jianzhong & Lv, Yukun & Ye, Xuemin, 2016. "Enhancing the storage stability of petroleum coke slurry by producing biogas from sludge fermentation," Energy, Elsevier, vol. 113(C), pages 319-327.
    6. Amir Rowhani & Thomas J. Rainey, 2016. "Scrap Tyre Management Pathways and Their Use as a Fuel—A Review," Energies, MDPI, vol. 9(11), pages 1-26, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leonel J. R. Nunes & Laura Guimarães & Miguel Oliveira & Peter Kille & Nuno G. C. Ferreira, 2022. "Thermochemical Conversion Processes as a Path for Sustainability of the Tire Industry: Carbon Black Recovery Potential in a Circular Economy Approach," Clean Technol., MDPI, vol. 4(3), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haseeb Yaqoob & Yew Heng Teoh & Farooq Sher & Muhammad Ahmad Jamil & Daniyal Murtaza & Mansour Al Qubeissi & Mehtab UI Hassan & M. A. Mujtaba, 2021. "Current Status and Potential of Tire Pyrolysis Oil Production as an Alternative Fuel in Developing Countries," Sustainability, MDPI, vol. 13(6), pages 1-26, March.
    2. Jacob, Ron M. & Tokheim, Lars-André, 2023. "Electrified calciner concept for CO2 capture in pyro-processing of a dry process cement plant," Energy, Elsevier, vol. 268(C).
    3. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    4. Luís Carmo-Calado & Manuel Jesús Hermoso-Orzáez & Roberta Mota-Panizio & Bruno Guilherme-Garcia & Paulo Brito, 2020. "Co-Combustion of Waste Tires and Plastic-Rubber Wastes with Biomass Technical and Environmental Analysis," Sustainability, MDPI, vol. 12(3), pages 1-19, February.
    5. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    6. Shen, Peiliang & Jiang, Yi & Zhang, Yangyang & Liu, Songhui & Xuan, Dongxing & Lu, Jianxin & Zhang, Shipeng & Poon, Chi Sun, 2023. "Production of aragonite whiskers by carbonation of fine recycled concrete wastes: An alternative pathway for efficient CO2 sequestration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    7. Laghezza, Maddalena & Papari, Sadegh & Fiore, Silvia & Berruti, Franco, 2023. "Techno-economic assessment of the pyrolysis of rubber waste," Energy, Elsevier, vol. 278(PA).
    8. Prasad, Ravita D. & Bansal, R.C. & Raturi, Atul, 2014. "Multi-faceted energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 686-699.
    9. Jerzy Jackowski & Marcin Żmuda & Marcin Wieczorek & Andrzej Zuska, 2021. "Quasi-Static Research of ATV/UTV Non-Pneumatic Tires," Energies, MDPI, vol. 14(20), pages 1-12, October.
    10. Zhao, Zhenghui & Wang, Ruikun & Ge, Lichao & Wu, Junhong & Yin, Qianqian & Wang, Chunbo, 2019. "Energy utilization of coal-coking wastes via coal slurry preparation: The characteristics of slurrying, combustion, and pollutant emission," Energy, Elsevier, vol. 168(C), pages 609-618.
    11. Martin Greco-Coppi & Carina Hofmann & Diethelm Walter & Jochen Ströhle & Bernd Epple, 2023. "Negative CO2 emissions in the lime production using an indirectly heated carbonate looping process," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(6), pages 1-32, August.
    12. Vuk Petronijević & Aleksandar Đorđević & Miladin Stefanović & Slavko Arsovski & Zdravko Krivokapić & Milan Mišić, 2020. "Energy Recovery through End-of-Life Vehicles Recycling in Developing Countries," Sustainability, MDPI, vol. 12(21), pages 1-26, October.
    13. Maria-Lizbeth Uriarte-Miranda & Santiago-Omar Caballero-Morales & Jose-Luis Martinez-Flores & Patricia Cano-Olivos & Anastasia-Alexandrovna Akulova, 2018. "Reverse Logistic Strategy for the Management of Tire Waste in Mexico and Russia: Review and Conceptual Model," Sustainability, MDPI, vol. 10(10), pages 1-25, September.
    14. Martínez, Juan Daniel, 2021. "An overview of the end-of-life tires status in some Latin American countries: Proposing pyrolysis for a circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    15. Bülent Özdalyan & Recep Ç. Orman, 2018. "Experimental Investigation of the Use of Waste Mineral Oils as a Fuel with Organic-Based Mn Additive," Energies, MDPI, vol. 11(6), pages 1-12, June.
    16. Wahiba Yaïci & Evgueniy Entchev & Michela Longo, 2022. "Recent Advances in Small-Scale Carbon Capture Systems for Micro-Combined Heat and Power Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
    17. Ma, Linwei & Fu, Feng & Li, Zheng & Liu, Pei, 2012. "Oil development in China: Current status and future trends," Energy Policy, Elsevier, vol. 45(C), pages 43-53.
    18. Hao, Han & Liu, Zongwei & Zhao, Fuquan & Li, Weiqi & Hang, Wen, 2015. "Scenario analysis of energy consumption and greenhouse gas emissions from China's passenger vehicles," Energy, Elsevier, vol. 91(C), pages 151-159.
    19. Tae Hyoung Kim & Sung Ho Tae & Chang U. Chae & Won Young Choi, 2016. "The Environmental Impact and Cost Analysis of Concrete Mixing Blast Furnace Slag Containing Titanium Gypsum and Sludge in South Korea," Sustainability, MDPI, vol. 8(6), pages 1-19, May.
    20. Aranda Usón, Alfonso & López-Sabirón, Ana M. & Ferreira, Germán & Llera Sastresa, Eva, 2013. "Uses of alternative fuels and raw materials in the cement industry as sustainable waste management options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 242-260.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3500-:d:521687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.