IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i6p3214-d517145.html
   My bibliography  Save this article

Current Status and Potential of Tire Pyrolysis Oil Production as an Alternative Fuel in Developing Countries

Author

Listed:
  • Haseeb Yaqoob

    (School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, Penang 14300, Malaysia
    Department of Mechanical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan)

  • Yew Heng Teoh

    (School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, Penang 14300, Malaysia)

  • Farooq Sher

    (School of Mechanical, Aerospace and Automotive Engineering, Faculty of Engineering, Environmental and Computing, Coventry University, Coventry CV1 5FB, UK
    Institute for Future Transport and Cities, Coventry University, Priory Street, Coventry CV1 5FB, UK)

  • Muhammad Ahmad Jamil

    (Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK)

  • Daniyal Murtaza

    (Department of Mechanical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan)

  • Mansour Al Qubeissi

    (School of Mechanical, Aerospace and Automotive Engineering, Faculty of Engineering, Environmental and Computing, Coventry University, Coventry CV1 5FB, UK
    Institute for Future Transport and Cities, Coventry University, Priory Street, Coventry CV1 5FB, UK)

  • Mehtab UI Hassan

    (Department of Mechanical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan)

  • M. A. Mujtaba

    (Department of Mechanical Engineering, New Campus Lahore, University of Engineering and Technology, Punjab 39161, Pakistan)

Abstract

Energy is essential for the nature of life and the development of countries. The main demand for the 21st century is to fulfill growing energy needs. Pakistan, through the use of fossil fuels, meets energy demands. There is pressure on the economy of the country due to the massive reliance on fossil fuels, and this tendency is influenced by various environmental impacts. To overcome the burden on fossil fuels, more attention has been drawn to provide fossil fuel substitution. Tire pyrolysis is among the effective substitutes of the fuel technology that generates useful products of liquid oil, char, and pyro gas. This research focuses on the environmental, social, and economic viability of tire pyrolysis oil in Pakistan. This study estimates the production and potential of tire pyrolysis oil (TPO) in Pakistan. Based on the calculations, the potential of tire pyrolysis oil production in Pakistan from 2015–2019 is 468,081 to 548,406 tons. The potential production of TPO in 2018–2019 was ~8.30% of the total import (6.6 million tons) of crude oil. Therefore, tire pyrolysis oil is considered an alternative fuel representing an economic and environmentally viability solution for Pakistan.

Suggested Citation

  • Haseeb Yaqoob & Yew Heng Teoh & Farooq Sher & Muhammad Ahmad Jamil & Daniyal Murtaza & Mansour Al Qubeissi & Mehtab UI Hassan & M. A. Mujtaba, 2021. "Current Status and Potential of Tire Pyrolysis Oil Production as an Alternative Fuel in Developing Countries," Sustainability, MDPI, vol. 13(6), pages 1-26, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3214-:d:517145
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/6/3214/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/6/3214/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sher, Farooq & Yaqoob, Aqsa & Saeed, Farrukh & Zhang, Shengfu & Jahan, Zaib & Klemeš, Jiří Jaromír, 2020. "Torrefied biomass fuels as a renewable alternative to coal in co-firing for power generation," Energy, Elsevier, vol. 209(C).
    2. Hita, Idoia & Arabiourrutia, Miriam & Olazar, Martin & Bilbao, Javier & Arandes, José María & Castaño, Pedro, 2016. "Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 745-759.
    3. Ahmed, Saeed & Mahmood, Anzar & Hasan, Ahmad & Sidhu, Guftaar Ahmad Sardar & Butt, Muhammad Fasih Uddin, 2016. "A comparative review of China, India and Pakistan renewable energy sectors and sharing opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 216-225.
    4. Gamboa, Alexander R. & Rocha, Ana M.A. & dos Santos, Leila R. & de Carvalho, João A., 2020. "Tire pyrolysis oil in Brazil: Potential production and quality of fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    5. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Mekhilef, S., 2011. "A review on prospect of Jatropha curcas for biodiesel in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3733-3756.
    6. Jerome A. Ramirez & Richard J. Brown & Thomas J. Rainey, 2015. "A Review of Hydrothermal Liquefaction Bio-Crude Properties and Prospects for Upgrading to Transportation Fuels," Energies, MDPI, vol. 8(7), pages 1-30, July.
    7. Geraldo Cardoso de Oliveira Neto & Luiz Eduardo Carvalho Chaves & Luiz Fernando Rodrigues Pinto & José Carlos Curvelo Santana & Marlene Paula Castro Amorim & Mário Jorge Ferreira Rodrigues, 2019. "Economic, Environmental and Social Benefits of Adoption of Pyrolysis Process of Tires: A Feasible and Ecofriendly Mode to Reduce the Impacts of Scrap Tires in Brazil," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    8. Sharma, Atul & Srivastava, Jaya & Kar, Sanjay Kumar & Kumar, Anil, 2012. "Wind energy status in India: A short review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1157-1164.
    9. Machin, Einara Blanco & Pedroso, Daniel Travieso & de Carvalho, João Andrade, 2017. "Energetic valorization of waste tires," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 306-315.
    10. Antoniou, N. & Stavropoulos, G. & Zabaniotou, A., 2014. "Activation of end of life tyres pyrolytic char for enhancing viability of pyrolysis – Critical review, analysis and recommendations for a hybrid dual system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1053-1073.
    11. Mirza, Umar K. & Ahmad, Nasir & Majeed, Tariq, 2008. "An overview of biomass energy utilization in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1988-1996, September.
    12. Mirjat, Nayyar Hussain & Uqaili, Mohammad Aslam & Harijan, Khanji & Valasai, Gordhan Das & Shaikh, Faheemullah & Waris, M., 2017. "A review of energy and power planning and policies of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 110-127.
    13. Alvarez, J. & Lopez, G. & Amutio, M. & Mkhize, N.M. & Danon, B. & van der Gryp, P. & Görgens, J.F. & Bilbao, J. & Olazar, M., 2017. "Evaluation of the properties of tyre pyrolysis oils obtained in a conical spouted bed reactor," Energy, Elsevier, vol. 128(C), pages 463-474.
    14. Haseeb Yaqoob & Yew Heng Teoh & Muhammad Ahmad Jamil & Tahir Rasheed & Farooq Sher, 2020. "An Experimental Investigation on Tribological Behaviour of Tire-Derived Pyrolysis Oil Blended with Biodiesel Fuel," Sustainability, MDPI, vol. 12(23), pages 1-13, November.
    15. Muhammad Irfan & Zhen-Yu Zhao & Munir Ahmad & Marie Claire Mukeshimana, 2019. "Solar Energy Development in Pakistan: Barriers and Policy Recommendations," Sustainability, MDPI, vol. 11(4), pages 1-18, February.
    16. Amir Rowhani & Thomas J. Rainey, 2016. "Scrap Tyre Management Pathways and Their Use as a Fuel—A Review," Energies, MDPI, vol. 9(11), pages 1-26, October.
    17. Antoniou, N. & Zabaniotou, A., 2013. "Features of an efficient and environmentally attractive used tyres pyrolysis with energy and material recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 539-558.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mateusz Jackowski & Łukasz Niedźwiecki & Krzysztof Mościcki & Amit Arora & Muhammad Azam Saeed & Krystian Krochmalny & Jakub Pawliczek & Anna Trusek & Magdalena Lech & Jan Skřínský & Jakub Čespiva & J, 2021. "Synergetic Co-Production of Beer Colouring Agent and Solid Fuel from Brewers’ Spent Grain in the Circular Economy Perspective," Sustainability, MDPI, vol. 13(18), pages 1-17, September.
    2. Tumala, Mohammed M. & Salisu, Afees A. & Gambo, Ali I., 2023. "Disentangled oil shocks and stock market volatility in Nigeria and South Africa: A GARCH-MIDAS approach," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 707-717.
    3. Evgeniy Yurevich Titov & Ivan Vasilevich Bodrikov & Alexander Leonidovich Vasiliev & Yuriy Alekseevich Kurskii & Anna Gennadievna Ivanova & Andrey Leonidovich Golovin & Dmitry Alekseevich Shirokov & D, 2023. "Non-Thermal Plasma Pyrolysis of Fuel Oil in the Liquid Phase," Energies, MDPI, vol. 16(10), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arabiourrutia, Miriam & Lopez, Gartzen & Artetxe, Maite & Alvarez, Jon & Bilbao, Javier & Olazar, Martin, 2020. "Waste tyre valorization by catalytic pyrolysis – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    2. Gamboa, Alexander R. & Rocha, Ana M.A. & dos Santos, Leila R. & de Carvalho, João A., 2020. "Tire pyrolysis oil in Brazil: Potential production and quality of fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    3. Martínez, Juan Daniel, 2021. "An overview of the end-of-life tires status in some Latin American countries: Proposing pyrolysis for a circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. Irina Glushankova & Aleksandr Ketov & Marina Krasnovskikh & Larisa Rudakova & Iakov Vaisman, 2019. "End of Life Tires as a Possible Source of Toxic Substances Emission in the Process of Combustion," Resources, MDPI, vol. 8(2), pages 1-10, June.
    5. María Teresa Martín & Juan Luis Aguirre & Juan Baena-González & Sergio González & Roberto Pérez-Aparicio & Leticia Saiz-Rodríguez, 2022. "Influence of Specific Power on the Solid and Liquid Products Obtained in the Microwave-Assisted Pyrolysis of End-of-Life Tires," Energies, MDPI, vol. 15(6), pages 1-17, March.
    6. Czajczyńska, Dina & Krzyżyńska, Renata & Jouhara, Hussam & Spencer, Nik, 2017. "Use of pyrolytic gas from waste tire as a fuel: A review," Energy, Elsevier, vol. 134(C), pages 1121-1131.
    7. Fanta Barry & Marie Sawadogo & Maïmouna Bologo (Traoré) & Igor W. K. Ouédraogo & Thomas Dogot, 2021. "Key Barriers to the Adoption of Biomass Gasification in Burkina Faso," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    8. Gunerhan, Ali & Altuntas, Onder & Caliskan, Hakan, 2023. "Utilization of renewable and sustainable aviation biofuels from waste tyres for sustainable aviation transport sector," Energy, Elsevier, vol. 276(C).
    9. Wajahat Ullah Khan Tareen & Zuha Anjum & Nabila Yasin & Leenah Siddiqui & Ifzana Farhat & Suheel Abdullah Malik & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan & Mohamed Darwish & Muhammad Aamir &, 2018. "The Prospective Non-Conventional Alternate and Renewable Energy Sources in Pakistan—A Focus on Biomass Energy for Power Generation, Transportation, and Industrial Fuel," Energies, MDPI, vol. 11(9), pages 1-49, September.
    10. Laghezza, Maddalena & Papari, Sadegh & Fiore, Silvia & Berruti, Franco, 2023. "Techno-economic assessment of the pyrolysis of rubber waste," Energy, Elsevier, vol. 278(PA).
    11. Wajahat Ullah Khan Tareen & Muhammad Tariq Dilbar & Muhammad Farhan & Muhammad Ali Nawaz & Ali Waqar Durrani & Kamran Ali Memon & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan & Muhammad Amir & Mu, 2019. "Present Status and Potential of Biomass Energy in Pakistan Based on Existing and Future Renewable Resources," Sustainability, MDPI, vol. 12(1), pages 1-40, December.
    12. Chakrabarti, Mohammed Harun & Ali, Mehmood & Usmani, Jafar Nazir & Khan, Nasim Ahmed & Hasan, Diya'uddeen Basheer & Islam, Md. Sakinul & Abdul Raman, Abdul Aziz & Yusoff, Rozita & Irfan, Muhammad Fais, 2012. "Status of biodiesel research and development in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4396-4405.
    13. Hita, Idoia & Arabiourrutia, Miriam & Olazar, Martin & Bilbao, Javier & Arandes, José María & Castaño, Pedro, 2016. "Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 745-759.
    14. Pedro Mora & Arturo Alarcón & Laura Sánchez-Martín & Bernardo Llamas, 2021. "Biomass Content in Scrap Tires and Its Use as Sustainable Energy Resource: A CO 2 Mitigation Assessment," Sustainability, MDPI, vol. 13(6), pages 1-12, March.
    15. Younas, Umair & Khan, B. & Ali, S.M. & Arshad, C.M. & Farid, U. & Zeb, Kamran & Rehman, Fahad & Mehmood, Yasir & Vaccaro, A., 2016. "Pakistan geothermal renewable energy potential for electric power generation: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 398-413.
    16. Nusrat H. Zerin & Mohammad G. Rasul & M. I. Jahirul & A.S.M. Sayem & R. Haque, 2023. "Electrochemical Application of Activated Carbon Derived from End-of-Life Tyres: A Technological Review," Sustainability, MDPI, vol. 16(1), pages 1-19, December.
    17. Riaz Uddin & Abdurrahman Javid Shaikh & Hashim Raza Khan & Muhammad Ayaz Shirazi & Athar Rashid & Saad Ahmed Qazi, 2021. "Renewable Energy Perspectives of Pakistan and Turkey: Current Analysis and Policy Recommendations," Sustainability, MDPI, vol. 13(6), pages 1-28, March.
    18. Shahid Ali & Qingyou Yan & Muhammad Sajjad Hussain & Muhammad Irfan & Munir Ahmad & Asif Razzaq & Vishal Dagar & Cem Işık, 2021. "Evaluating Green Technology Strategies for the Sustainable Development of Solar Power Projects: Evidence from Pakistan," Sustainability, MDPI, vol. 13(23), pages 1-29, November.
    19. Amir Rowhani & Thomas J. Rainey, 2016. "Scrap Tyre Management Pathways and Their Use as a Fuel—A Review," Energies, MDPI, vol. 9(11), pages 1-26, October.
    20. Zulqarnain & Muhammad Ayoub & Mohd Hizami Mohd Yusoff & Muhammad Hamza Nazir & Imtisal Zahid & Mariam Ameen & Farooq Sher & Dita Floresyona & Eduardus Budi Nursanto, 2021. "A Comprehensive Review on Oil Extraction and Biodiesel Production Technologies," Sustainability, MDPI, vol. 13(2), pages 1-28, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3214-:d:517145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.