IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2023i1p47-d1303679.html
   My bibliography  Save this article

Electrochemical Application of Activated Carbon Derived from End-of-Life Tyres: A Technological Review

Author

Listed:
  • Nusrat H. Zerin

    (Fuel and Energy Research Group, School of Engineering and Technology, Central Queensland University, North Rockhampton, QLD 4702, Australia)

  • Mohammad G. Rasul

    (Fuel and Energy Research Group, School of Engineering and Technology, Central Queensland University, North Rockhampton, QLD 4702, Australia)

  • M. I. Jahirul

    (Fuel and Energy Research Group, School of Engineering and Technology, Central Queensland University, North Rockhampton, QLD 4702, Australia)

  • A.S.M. Sayem

    (Department of Mechanical Engineering, Chittagong University of Engineering & Technology, Chattogram 4349, Bangladesh)

  • R. Haque

    (School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia)

Abstract

Tyre waste is a common form of non-degradable polymer-based solid waste. This solid waste can be effectively managed by converting it into char through the pyrolysis process and then further converting the char into activated carbon (AC) through physical and chemical activation processes. Tyre-derived activated carbon (TDAC) has versatile applications, such as its use as an absorber, catalyst, and electrode material, among others. This study aims to review the electrochemical properties of TDAC. This study employed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta analysis) bibliographic search methodology, with a specific focus on the application of TDAC in a wide variety of energy storage devices, including lithium-ion batteries, sodium-ion batteries, potassium-ion batteries, and supercapacitors. In several experimental studies, TDAC was utilised as an electrode in numerous energy devices due to its high specific capacitance properties. The study found that both activation processes can produce AC with a surface area ranging from 400 to 900 m 2 /g. However, the study also discovered that the surface morphology of TDAC influenced the electrochemical behaviours of the synthesised electrodes.

Suggested Citation

  • Nusrat H. Zerin & Mohammad G. Rasul & M. I. Jahirul & A.S.M. Sayem & R. Haque, 2023. "Electrochemical Application of Activated Carbon Derived from End-of-Life Tyres: A Technological Review," Sustainability, MDPI, vol. 16(1), pages 1-19, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:47-:d:1303679
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/1/47/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/1/47/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lehto, Jani & Oasmaa, Anja & Solantausta, Yrjö & Kytö, Matti & Chiaramonti, David, 2014. "Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass," Applied Energy, Elsevier, vol. 116(C), pages 178-190.
    2. Alvarez, J. & Lopez, G. & Amutio, M. & Mkhize, N.M. & Danon, B. & van der Gryp, P. & Görgens, J.F. & Bilbao, J. & Olazar, M., 2017. "Evaluation of the properties of tyre pyrolysis oils obtained in a conical spouted bed reactor," Energy, Elsevier, vol. 128(C), pages 463-474.
    3. Amir Rowhani & Thomas J. Rainey, 2016. "Scrap Tyre Management Pathways and Their Use as a Fuel—A Review," Energies, MDPI, vol. 9(11), pages 1-26, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Irina Glushankova & Aleksandr Ketov & Marina Krasnovskikh & Larisa Rudakova & Iakov Vaisman, 2019. "End of Life Tires as a Possible Source of Toxic Substances Emission in the Process of Combustion," Resources, MDPI, vol. 8(2), pages 1-10, June.
    2. Martínez, Juan Daniel, 2021. "An overview of the end-of-life tires status in some Latin American countries: Proposing pyrolysis for a circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Haseeb Yaqoob & Yew Heng Teoh & Farooq Sher & Muhammad Ahmad Jamil & Daniyal Murtaza & Mansour Al Qubeissi & Mehtab UI Hassan & M. A. Mujtaba, 2021. "Current Status and Potential of Tire Pyrolysis Oil Production as an Alternative Fuel in Developing Countries," Sustainability, MDPI, vol. 13(6), pages 1-26, March.
    4. Arabiourrutia, Miriam & Lopez, Gartzen & Artetxe, Maite & Alvarez, Jon & Bilbao, Javier & Olazar, Martin, 2020. "Waste tyre valorization by catalytic pyrolysis – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    5. Lee, Seokhwan & Woo, Sang Hee & Kim, Yongrae & Choi, Young & Kang, Kernyong, 2020. "Combustion and emission characteristics of a diesel-powered generator running with N-butanol/coffee ground pyrolysis oil/diesel blended fuel," Energy, Elsevier, vol. 206(C).
    6. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    7. Radoslaw Slezak & Hilal Unyay & Szymon Szufa & Stanislaw Ledakowicz, 2023. "An Extensive Review and Comparison of Modern Biomass Reactors Torrefaction vs. Biomass Pyrolizers—Part 2," Energies, MDPI, vol. 16(5), pages 1-25, February.
    8. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    9. Gamboa, Alexander R. & Rocha, Ana M.A. & dos Santos, Leila R. & de Carvalho, João A., 2020. "Tire pyrolysis oil in Brazil: Potential production and quality of fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    10. Farhad Beik & Leon Williams & Tim Brown & Stuart T. Wagland, 2021. "Managing Non-Sewered Human Waste Using Thermochemical Waste Treatment Technologies: A Review," Energies, MDPI, vol. 14(22), pages 1-22, November.
    11. Kurji, H. & Valera-Medina, A. & Runyon, J. & Giles, A. & Pugh, D. & Marsh, R. & Cerone, N. & Zimbardi, F. & Valerio, V., 2016. "Combustion characteristics of biodiesel saturated with pyrolysis oil for power generation in gas turbines," Renewable Energy, Elsevier, vol. 99(C), pages 443-451.
    12. Syed-Hassan, Syed Shatir A. & Wang, Yi & Hu, Song & Su, Sheng & Xiang, Jun, 2017. "Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 888-913.
    13. Pettersson, Malin & Olofsson, Johanna & Börjesson, Pål & Björnsson, Lovisa, 2022. "Reductions in greenhouse gas emissions through innovative co-production of bio-oil in combined heat and power plants," Applied Energy, Elsevier, vol. 324(C).
    14. Campuzano, Felipe & Brown, Robert C. & Martínez, Juan Daniel, 2019. "Auger reactors for pyrolysis of biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 372-409.
    15. Nie, Yuhao & Bi, Xiaotao T., 2018. "Techno-economic assessment of transportation biofuels from hydrothermal liquefaction of forest residues in British Columbia," Energy, Elsevier, vol. 153(C), pages 464-475.
    16. Zhang, Qing & Xu, Ying & Li, Yuping & Wang, Tiejun & Zhang, Qi & Ma, Longlong & He, Minghong & Li, Kai, 2015. "Investigation on the esterification by using supercritical ethanol for bio-oil upgrading," Applied Energy, Elsevier, vol. 160(C), pages 633-640.
    17. Brassard, P. & Godbout, S. & Hamelin, L., 2021. "Framework for consequential life cycle assessment of pyrolysis biorefineries: A case study for the conversion of primary forestry residues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    18. Leng, Lijian & Li, Hui & Yuan, Xingzhong & Zhou, Wenguang & Huang, Huajun, 2018. "Bio-oil upgrading by emulsification/microemulsification: A review," Energy, Elsevier, vol. 161(C), pages 214-232.
    19. María Teresa Martín & Juan Luis Aguirre & Juan Baena-González & Sergio González & Roberto Pérez-Aparicio & Leticia Saiz-Rodríguez, 2022. "Influence of Specific Power on the Solid and Liquid Products Obtained in the Microwave-Assisted Pyrolysis of End-of-Life Tires," Energies, MDPI, vol. 15(6), pages 1-17, March.
    20. Kung, Chih-Chun & Mu, Jianhong E., 2019. "Prospect of China's renewable energy development from pyrolysis and biochar applications under climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:47-:d:1303679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.