IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i5p2876-d512152.html
   My bibliography  Save this article

Exposing Emerging Trends in Smart Sustainable City Research Using Deep Autoencoders-Based Fuzzy C-Means

Author

Listed:
  • Anne Parlina

    (Department of Electrical Engineering, Universitas Indonesia, Depok, Jawa Barat 16424, Indonesia)

  • Kalamullah Ramli

    (Department of Electrical Engineering, Universitas Indonesia, Depok, Jawa Barat 16424, Indonesia)

  • Hendri Murfi

    (Department of Mathematics, Universitas Indonesia, Depok, Jawa Barat 16424, Indonesia)

Abstract

The literature discussing the concepts, technologies, and ICT-based urban innovation approaches of smart cities has been growing, along with initiatives from cities all over the world that are competing to improve their services and become smart and sustainable. However, current studies that provide a comprehensive understanding and reveal smart and sustainable city research trends and characteristics are still lacking. Meanwhile, policymakers and practitioners alike need to pursue progressive development. In response to this shortcoming, this research offers content analysis studies based on topic modeling approaches to capture the evolution and characteristics of topics in the scientific literature on smart and sustainable city research. More importantly, a novel topic-detecting algorithm based on the deep learning and clustering techniques, namely deep autoencoders-based fuzzy C-means (DFCM), is introduced for analyzing the research topic trend. The topics generated by this proposed algorithm have relatively higher coherence values than those generated by previously used topic detection methods, namely non-negative matrix factorization (NMF), latent Dirichlet allocation (LDA), and eigenspace-based fuzzy C-means (EFCM). The 30 main topics that appeared in topic modeling with the DFCM algorithm were classified into six groups (technology, energy, environment, transportation, e-governance, and human capital and welfare) that characterize the six dimensions of smart, sustainable city research.

Suggested Citation

  • Anne Parlina & Kalamullah Ramli & Hendri Murfi, 2021. "Exposing Emerging Trends in Smart Sustainable City Research Using Deep Autoencoders-Based Fuzzy C-Means," Sustainability, MDPI, vol. 13(5), pages 1-28, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2876-:d:512152
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/5/2876/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/5/2876/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adegboyega Ojo & Zamira Dzhusupova & Edward Curry, 2016. "Exploring the Nature of the Smart Cities Research Landscape," Public Administration and Information Technology, in: J. Ramon Gil-Garcia & Theresa A. Pardo & Taewoo Nam (ed.), Smarter as the New Urban Agenda, edition 1, pages 23-47, Springer.
    2. Pinto, Sebastián & Albanese, Federico & Dorso, Claudio O. & Balenzuela, Pablo, 2019. "Quantifying time-dependent Media Agenda and public opinion by topic modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 614-624.
    3. Jian-gang Shi & Wei Miao & Hongyun Si, 2019. "Visualization and Analysis of Mapping Knowledge Domain of Urban Vitality Research," Sustainability, MDPI, vol. 11(4), pages 1-17, February.
    4. Robert G. Hollands, 2008. "Will the real smart city please stand up?," City, Taylor & Francis Journals, vol. 12(3), pages 303-320, December.
    5. Goldman, Todd & Gorham, Roger, 2006. "Sustainable urban transport: Four innovative directions," Technology in Society, Elsevier, vol. 28(1), pages 261-273.
    6. Stanislav E. Shmelev & Irina A. Shmeleva, 2009. "Sustainable cities: problems of integrated interdisciplinary research," International Journal of Sustainable Development, Inderscience Enterprises Ltd, vol. 12(1), pages 4-23.
    7. Jiang, Hanchen & Qiang, Maoshan & Lin, Peng, 2016. "A topic modeling based bibliometric exploration of hydropower research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 226-237.
    8. Mora, Luca & Deakin, Mark & Reid, Alasdair, 2019. "Combining co-citation clustering and text-based analysis to reveal the main development paths of smart cities," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 56-69.
    9. Margarita Angelidou, 2017. "The Role of Smart City Characteristics in the Plans of Fifteen Cities," Journal of Urban Technology, Taylor & Francis Journals, vol. 24(4), pages 3-28, October.
    10. Kyunghun Min & Moonyoung Yoon & Katsunori Furuya, 2019. "A Comparison of a Smart City’s Trends in Urban Planning before and after 2016 through Keyword Network Analysis," Sustainability, MDPI, vol. 11(11), pages 1-25, June.
    11. United Nations, 2016. "The Sustainable Development Goals 2016," Working Papers id:11456, eSocialSciences.
    12. Momeni, Abdolreza & Rost, Katja, 2016. "Identification and monitoring of possible disruptive technologies by patent-development paths and topic modeling," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 16-29.
    13. Yi-Ming Guo & Zhen-Ling Huang & Ji Guo & Hua Li & Xing-Rong Guo & Mpeoane Judith Nkeli, 2019. "Bibliometric Analysis on Smart Cities Research," Sustainability, MDPI, vol. 11(13), pages 1-18, June.
    14. Nicky J. Welton & Howard H. Z. Thom, 2015. "Value of Information," Medical Decision Making, , vol. 35(5), pages 564-566, July.
    15. Truong, Dothang, 2021. "Using causal machine learning for predicting the risk of flight delays in air transportation," Journal of Air Transport Management, Elsevier, vol. 91(C).
    16. Madurai Elavarasan, Rajvikram & Shafiullah, GM & Raju, Kannadasan & Mudgal, Vijay & Arif, M.T. & Jamal, Taskin & Subramanian, Senthilkumar & Sriraja Balaguru, V.S. & Reddy, K.S. & Subramaniam, Umashan, 2020. "COVID-19: Impact analysis and recommendations for power sector operation," Applied Energy, Elsevier, vol. 279(C).
    17. Martin Reisenbichler & Thomas Reutterer, 2019. "Topic modeling in marketing: recent advances and research opportunities," Journal of Business Economics, Springer, vol. 89(3), pages 327-356, April.
    18. Amado, Alexandra & Cortez, Paulo & Rita, Paulo & Moro, Sérgio, 2018. "Research Trends On Big Data In Marketing: A Text Mining And Topic Modeling Based Literature Analysis," European Research on Management and Business Economics (ERMBE), Academia Europea de Dirección y Economía de la Empresa (AEDEM), vol. 24(1), pages 1-7.
    19. Chung, Jae Young & Lee, Sunbok, 2019. "Dropout early warning systems for high school students using machine learning," Children and Youth Services Review, Elsevier, vol. 96(C), pages 346-353.
    20. Annalisa Cocchia, 2014. "Smart and Digital City: A Systematic Literature Review," Progress in IS, in: Renata Paola Dameri & Camille Rosenthal-Sabroux (ed.), Smart City, edition 127, pages 13-43, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Radoslaw Miskiewicz, 2022. "Clean and Affordable Energy within Sustainable Development Goals: The Role of Governance Digitalization," Energies, MDPI, vol. 15(24), pages 1-17, December.
    2. Vítor de Castro Paes & Clinton Hudson Moreira Pessoa & Rodrigo Pereira Pagliusi & Carlos Eduardo Barbosa & Matheus Argôlo & Yuri Oliveira de Lima & Herbert Salazar & Alan Lyra & Jano Moreira de Souza, 2023. "Analyzing the Challenges for Future Smart and Sustainable Cities," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    3. Fatma Sena Karal & Ayberk Soyer, 2024. "A systematic literature review: Setting a basis for smart and sustainable city performance measurement," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(1), pages 555-573, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Secinaro, Silvana & Brescia, Valerio & Lanzalonga, Federico & Santoro, Gabriele, 2022. "Smart city reporting: A bibliometric and structured literature review analysis to identify technological opportunities and challenges for sustainable development," Journal of Business Research, Elsevier, vol. 149(C), pages 296-313.
    2. Jalaluddin Abdul Malek & Seng Boon Lim & Tan Yigitcanlar, 2021. "Social Inclusion Indicators for Building Citizen-Centric Smart Cities: A Systematic Literature Review," Sustainability, MDPI, vol. 13(1), pages 1-29, January.
    3. Ayyoob Sharifi & Zaheer Allam & Bakhtiar Feizizadeh & Hessam Ghamari, 2021. "Three Decades of Research on Smart Cities: Mapping Knowledge Structure and Trends," Sustainability, MDPI, vol. 13(13), pages 1-23, June.
    4. Johannes Stübinger & Lucas Schneider, 2020. "Understanding Smart City—A Data-Driven Literature Review," Sustainability, MDPI, vol. 12(20), pages 1-23, October.
    5. Lill Sarv & Ralf-Martin Soe, 2021. "Transition towards Smart City: The Case of Tallinn," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
    6. Renata Biadacz & Marek Biadacz, 2021. "Implementation of “Smart” Solutions and An Attempt to Measure Them: A Case Study of Czestochowa, Poland," Energies, MDPI, vol. 14(18), pages 1-28, September.
    7. Oleg Dashkevych & Boris A. Portnov, 2022. "Criteria for Smart City Identification: A Systematic Literature Review," Sustainability, MDPI, vol. 14(8), pages 1-34, April.
    8. Federico Delfino & Paola Laiolo & Federico Delfino, 2019. "Living Labs and Partnerships for Progress-How Universities can Drive the Process towards the Sustainable City," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 18(2), pages 71-73, April.
    9. Sabina Baraniewicz-Kotasińska, 2022. "The Scandinavian Third Way as a Proposal for Sustainable Smart City Development—A Case Study of Aarhus City," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    10. Saveria Olga Murielle Boulanger, 2022. "The Roadmap to Smart Cities: A Bibliometric Literature Review on Smart Cities’ Trends before and after the COVID-19 Pandemic," Energies, MDPI, vol. 15(24), pages 1-19, December.
    11. Yang, Zhen & Gao, Weijun & Han, Qing & Qi, Liyan, 2024. "Aggravating or alleviating? Smart city construction and urban inequality in China," Technology in Society, Elsevier, vol. 77(C).
    12. Kummitha, Rama Krishna Reddy, 2020. "Why distance matters: The relatedness between technology development and its appropriation in smart cities," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    13. Lim Seng BOON & Jalaluddin Abdul MALEK & Mohd Yusof HUSSAIN & Zurinah TAHIR, 2020. "Understanding the trends and characteristics of smart urbanism across continents," Smart Cities and Regional Development (SCRD) Journal, Smart-EDU Hub, Faculty of Public Administration, National University of Political Studies & Public Administration, vol. 4(1), pages 23-35, March.
    14. Francesco Schiavone & Francesco Paolo Appio & Luca Mora & Marcello Risitano, 2020. "The strategic, organizational, and entrepreneurial evolution of smart cities," International Entrepreneurship and Management Journal, Springer, vol. 16(4), pages 1155-1165, December.
    15. Barrutia, Jose M. & Echebarria, Carmen & Aguado-Moralejo, Itziar & Apaolaza-Ibáñez, Vanessa & Hartmann, Patrick, 2022. "Leading smart city projects: Government dynamic capabilities and public value creation," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    16. Pevcin Primož, 2019. "The Evolution of City Labelling in the Literature," Economics and Culture, Sciendo, vol. 16(1), pages 40-45, June.
    17. Parul Gupta & Sumedha Chauhan & M. P. Jaiswal, 2019. "Classification of Smart City Research - a Descriptive Literature Review and Future Research Agenda," Information Systems Frontiers, Springer, vol. 21(3), pages 661-685, June.
    18. Patrycja Szarek-Iwaniuk & Adam Senetra, 2020. "Access to ICT in Poland and the Co-Creation of Urban Space in the Process of Modern Social Participation in a Smart City—A Case Study," Sustainability, MDPI, vol. 12(5), pages 1-21, March.
    19. Peter Ingwersen & Antonio Eleazar Serrano-López, 2018. "Smart city research 1990–2016," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 1205-1236, November.
    20. Ruben Sánchez-Corcuera & Adrián Nuñez-Marcos & Jesus Sesma-Solance & Aritz Bilbao-Jayo & Rubén Mulero & Unai Zulaika & Gorka Azkune & Aitor Almeida, 2019. "Smart cities survey: Technologies, application domains and challenges for the cities of the future," International Journal of Distributed Sensor Networks, , vol. 15(6), pages 15501477198, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2876-:d:512152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.