IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i5p2861-d511926.html
   My bibliography  Save this article

Weather-Related Construction Delays in a Changing Climate: A Systematic State-of-the-Art Review

Author

Listed:
  • Steven J. Schuldt

    (Graduate School of Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, OH 45433, USA)

  • Mathew R. Nicholson

    (Graduate School of Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, OH 45433, USA)

  • Yaquarri A. Adams

    (Graduate School of Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, OH 45433, USA)

  • Justin D. Delorit

    (Graduate School of Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, OH 45433, USA)

Abstract

Adverse weather delays forty-five percent of construction projects worldwide, costing project owners and contractors billions of dollars in additional expenses and lost revenue each year. Additionally, changes in climate are expected to increase the frequency and intensity of weather conditions that cause these construction delays. Researchers have investigated the effect of weather on several aspects of construction. Still, no previous study comprehensively (1) identifies and quantifies the risks weather imposes on construction projects, (2) categorizes modeling and simulation approaches developed, and (3) summarizes mitigation strategies and adaptation techniques to provide best management practices for the construction industry. This paper accomplishes these goals through a systematic state-of-the-art review of 3207 articles published between 1972 and October 2020. This review identified extreme temperatures, precipitation, and high winds as the most impactful weather conditions on construction. Despite the prevalence of climate-focused delay studies, existing research fails to account for future climate in the modeling and identification of delay mitigation strategies. Accordingly, planners and project managers can use this research to identify weather-vulnerable activities, account for changing climate in projects, and build administrative or organizational capacity to assist in mitigating weather delays in construction. The cumulative contribution of this review will enable sustainable construction scheduling that is robust to a changing climate.

Suggested Citation

  • Steven J. Schuldt & Mathew R. Nicholson & Yaquarri A. Adams & Justin D. Delorit, 2021. "Weather-Related Construction Delays in a Changing Climate: A Systematic State-of-the-Art Review," Sustainability, MDPI, vol. 13(5), pages 1-25, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2861-:d:511926
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/5/2861/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/5/2861/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ernst Jan De Place Hansen & Jacob Norvig Larsen, 2011. "Employment and winter construction: a comparative analysis of Denmark and western European countries with a similar climate," Construction Management and Economics, Taylor & Francis Journals, vol. 29(9), pages 875-890, August.
    2. Pablo Ballesteros-Pérez & Stefán Thor Smith & Josephine Gwen Lloyd-Papworth & Peter Cooke, 2018. "Incorporating the effect of weather in construction scheduling and management with sine wave curves: application in the United Kingdom," Construction Management and Economics, Taylor & Francis Journals, vol. 36(12), pages 666-682, December.
    3. Zaher Mundher Yaseen & Zainab Hasan Ali & Sinan Q. Salih & Nadhir Al-Ansari, 2020. "Prediction of Risk Delay in Construction Projects Using a Hybrid Artificial Intelligence Model," Sustainability, MDPI, vol. 12(4), pages 1-14, February.
    4. Anas Moussa Al Refaie & Ali M. Alashwal & Zulkiflee Abdul-Samad & Hafez Salleh, 2020. "Weather and labor productivity in construction: a literature review and taxonomy of studies," International Journal of Productivity and Performance Management, Emerald Group Publishing Limited, vol. 70(4), pages 941-957, June.
    5. Nina Knittel & Martin W. Jury & Birgit Bednar-Friedl & Gabriel Bachner & Andrea K. Steiner, 2020. "A global analysis of heat-related labour productivity losses under climate change—implications for Germany’s foreign trade," Climatic Change, Springer, vol. 160(2), pages 251-269, May.
    6. Mateo Salazar, 2017. "The Effects of Climate on Output per Worker: Evidence from the Manufacturing Industry in Colombia," Revista Desarrollo y Sociedad, Universidad de los Andes,Facultad de Economía, CEDE, vol. 79(2), August.
    7. Lianghai Jin & Han Liu & Xiazhong Zheng & Shu Chen, 2020. "Exploring the Impact of Wind Loads on Tower Crane Operation," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-11, July.
    8. Kerkhove, L.-P. & Vanhoucke, M., 2017. "Optimised scheduling for weather sensitive offshore construction projects," Omega, Elsevier, vol. 66(PA), pages 58-78.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrej Bisták & Zdenka Hulínová & Michal Neštiak & Barbara Chamulová, 2021. "Simulation Modeling of Aerial Work Completed by Helicopters in the Construction Industry Focused on Weather Conditions," Sustainability, MDPI, vol. 13(24), pages 1-22, December.
    2. James E. Neumann & Paul Chinowsky & Jacob Helman & Margaret Black & Charles Fant & Kenneth Strzepek & Jeremy Martinich, 2021. "Climate effects on US infrastructure: the economics of adaptation for rail, roads, and coastal development," Climatic Change, Springer, vol. 167(3), pages 1-23, August.
    3. Emad Mohamed & Parinaz Jafari & Adam Chehouri & Simaan AbouRizk, 2021. "Simulation-Based Approach for Lookahead Scheduling of Onshore Wind Projects Subject to Weather Risk," Sustainability, MDPI, vol. 13(18), pages 1-27, September.
    4. Andrea Bafundi & Riccardo Camboni & Edoardo Grillo & Paola Valbonesi, 2023. "Public Procurement and the Risk of Severe Weather Events," "Marco Fanno" Working Papers 0303, Dipartimento di Scienze Economiche "Marco Fanno".

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emad Mohamed & Parinaz Jafari & Adam Chehouri & Simaan AbouRizk, 2021. "Simulation-Based Approach for Lookahead Scheduling of Onshore Wind Projects Subject to Weather Risk," Sustainability, MDPI, vol. 13(18), pages 1-27, September.
    2. Boda Liu & Bin Yang & Jianzhuang Xiao & Dayu Zhu & Binghan Zhang & Zhichen Wang & Miaosi Dong, 2021. "Review of Optimization Dynamically Applied in the Construction and the Application Potential of ICT," Sustainability, MDPI, vol. 13(10), pages 1-18, May.
    3. Albert H. Schrotenboer & Evrim Ursavas & Iris F. A. Vis, 2019. "A Branch-and-Price-and-Cut Algorithm for Resource-Constrained Pickup and Delivery Problems," Transportation Science, INFORMS, vol. 53(4), pages 1001-1022, July.
    4. Rippel, Daniel & Peng, Shengrui & Lütjen, Michael & Sczcerbicka, Helena & Freitag, Michael, 2020. "Model transformation framework for scheduling offshore logistics," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Data Science in Maritime and City Logistics: Data-driven Solutions for Logistics and Sustainability. Proceedings of the Hamburg International Conferen, volume 30, pages 521-552, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    5. Kwabena Asomanin Anaman & Irene Susana Egyir, 2019. "Economic Shocks and the Growth of the Construction Industry in Ghana Over the 50-Year Period From 1968 to 2017," Research in World Economy, Research in World Economy, Sciedu Press, vol. 10(1), pages 1-16, June.
    6. Ahmed Farouk Kineber & Shah Siddharth & Nicholas Chileshe & Badr Alsolami & Mohammed Magdy Hamed, 2022. "Addressing of Value Management Implementation Barriers within the Indian Construction Industry: A PLS-SEM Approach," Sustainability, MDPI, vol. 14(24), pages 1-24, December.
    7. Ke Wang & Ziyi Ying & Shankha Shubhra Goswami & Yongsheng Yin & Yafei Zhao, 2023. "Investigating the Role of Artificial Intelligence Technologies in the Construction Industry Using a Delphi-ANP-TOPSIS Hybrid MCDM Concept under a Fuzzy Environment," Sustainability, MDPI, vol. 15(15), pages 1-42, August.
    8. Rippel, Daniel & Jathe, Nicolas & Lütjen, Michael & Szczerbicka, Helena & Freitag, Michael, 2019. "Integrated domain model for operative offshore installation planning," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Digital Transformation in Maritime and City Logistics: Smart Solutions for Logistics. Proceedings of the Hamburg International Conference of Logistics, volume 28, pages 25-54, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    9. Daniel Rippel & Fatemeh Abasian Foroushani & Michael Lütjen & Michael Freitag, 2021. "A Crew Scheduling Model to Incrementally Optimize Workforce Assignments for Offshore Wind Farm Constructions," Energies, MDPI, vol. 14(21), pages 1-21, October.
    10. Santeramo, Fabio Gaetano & Bozzola, Martina & Lamonaca, Emilia, 2020. "Impacts of Climate Change on Global Agri-Food Trade," 2019: Recent Advances in Applied General Equilibrium Modeling: Relevance and Application to Agricultural Trade Analysis, December 8-10, 2019, Washington, DC 339375, International Agricultural Trade Research Consortium.
    11. Hermans, Ben & Leus, Roel & Looy, Bart Van, 2023. "Deciding on scheduling, secrecy, and patenting during the new product development process: The relevance of project planning models," Omega, Elsevier, vol. 116(C).
    12. Yuqiang Zhang & Drew T. Shindell, 2021. "Costs from labor losses due to extreme heat in the USA attributable to climate change," Climatic Change, Springer, vol. 164(3), pages 1-18, February.
    13. Ahmed Farouk Kineber & Idris Othman & Ayodeji Emmanuel Oke & Nicholas Chileshe & Mohanad Kamil Buniya, 2020. "Identifying and Assessing Sustainable Value Management Implementation Activities in Developing Countries: The Case of Egypt," Sustainability, MDPI, vol. 12(21), pages 1-20, November.
    14. Osberghaus, Daniel & Schenker, Oliver, 2022. "International trade and the transmission of temperature shocks," ZEW Discussion Papers 22-035, ZEW - Leibniz Centre for European Economic Research.
    15. Gabriele Standardi, 2023. "Exploring market-driven adaptation to climate change in a general equilibrium global trade model," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(2), pages 1-29, February.
    16. Musa Mohammed & Nasir Shafiq & Al-Baraa Abdulrahman Al-Mekhlafi & Ehab Farouk Rashed & Mohamed Hassan Khalil & Noor Amila Zawawi & Abubakar Muhammad & Aminu Mubarak Sadis, 2022. "The Mediating Role of Policy-Related Factors in the Relationship between Practice of Waste Generation and Sustainable Construction Waste Minimisation: PLS-SEM," Sustainability, MDPI, vol. 14(2), pages 1-21, January.
    17. Gabriel Bachner & Daniel Lincke & Jochen Hinkel, 2022. "The macroeconomic effects of adapting to high-end sea-level rise via protection and migration," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Marija Z. Ivanović & Đorđe Nedeljković & Zoran Stojadinović & Dejan Marinković & Nenad Ivanišević & Nevena Simić, 2022. "Detection and In-Depth Analysis of Causes of Delay in Construction Projects: Synergy between Machine Learning and Expert Knowledge," Sustainability, MDPI, vol. 14(22), pages 1-23, November.
    19. Franziska Gassmann & Daphne Francois & Lorena Zardo Trindade, 2015. "Improving Labor Market Outcomes for Poor and Vulnerable Groups in Mongolia," World Bank Publications - Reports 23671, The World Bank Group.
    20. Zhou, Yifan & Miao, Jindan & Yan, Bin & Zhang, Zhisheng, 2020. "Bio-objective long-term maintenance scheduling for wind turbines in multiple wind farms," Renewable Energy, Elsevier, vol. 160(C), pages 1136-1147.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2861-:d:511926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.