IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i4p2317-d502947.html
   My bibliography  Save this article

Review of Sewage Sludge as a Soil Amendment in Relation to Current International Guidelines: A Heavy Metal Perspective

Author

Listed:
  • Nuno Nunes

    (ISOPlexis Centre Sustainable Agriculture and Food Technology, University of Madeira. Campus da Penteada, 9020-105 Funchal, Portugal
    Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal)

  • Carla Ragonezi

    (ISOPlexis Centre Sustainable Agriculture and Food Technology, University of Madeira. Campus da Penteada, 9020-105 Funchal, Portugal
    Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal)

  • Carla S.S. Gouveia

    (ISOPlexis Centre Sustainable Agriculture and Food Technology, University of Madeira. Campus da Penteada, 9020-105 Funchal, Portugal
    Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal)

  • Miguel Â.A. Pinheiro de Carvalho

    (ISOPlexis Centre Sustainable Agriculture and Food Technology, University of Madeira. Campus da Penteada, 9020-105 Funchal, Portugal
    Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
    Faculty of Life Sciences, University of Madeira, Campus da Penteada, 9020-105 Funchal, Portugal)

Abstract

Overexploitation of resources makes the reutilization of waste a focal topic of modern society, and the question of the kind of wastes that can be used is continuously raised. Sewage sludge (SS) is derived from the wastewater treatment plants, considered important underused biomass, and can be used as a biofertilizer when properly stabilized due to the high content of inorganic matter, nitrate, and phosphorus. However, a wide range of pollutants can be present in these biosolids, limiting or prohibiting their use as biofertilizer, depending on the type and origin of industrial waste and household products. Long-term applications of these biosolids could substantially increase the concentration of contaminants, causing detrimental effects on the environment and induce hyperaccumulation or phytotoxicity in the produced crops. In this work, some critical parameters for soils and SS agronomic use, such as organic matter, nitrogen, phosphorous, and potassium (NPK), and heavy metals concentration have been reviewed. Several cases of food crop production and the accumulation of heavy metals after SS application are also discussed. SS production, usage, and legislation in EU are assessed to determine the possibility of sustainable management of this bioresource. Additionally, the World Health Organization (WHO) and Food and Agriculture Organization (FAO) guidelines are addressed. The opportunity to produce bioenergy crops, employing sewage sludge to enhance degraded land, is also considered, due to energy security. Although there are numerous advantages of sewage sludge, proper screening for heavy metals in all the variants (biosolids, soil, food products) is a must. SS application requires appropriate strict guidelines with appropriate regulatory oversight to control contamination of agricultural soils.

Suggested Citation

  • Nuno Nunes & Carla Ragonezi & Carla S.S. Gouveia & Miguel Â.A. Pinheiro de Carvalho, 2021. "Review of Sewage Sludge as a Soil Amendment in Relation to Current International Guidelines: A Heavy Metal Perspective," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:2317-:d:502947
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/4/2317/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/4/2317/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shafaqat Ali & Zohaib Abbas & Muhammad Rizwan & Ihsan Elahi Zaheer & İlkay Yavaş & Aydın Ünay & Mohamed M. Abdel-DAIM & May Bin-Jumah & Mirza Hasanuzzaman & Dimitris Kalderis, 2020. "Application of Floating Aquatic Plants in Phytoremediation of Heavy Metals Polluted Water: A Review," Sustainability, MDPI, vol. 12(5), pages 1-33, March.
    2. Kumar, Anil & Kumar, Nitin & Baredar, Prashant & Shukla, Ashish, 2015. "A review on biomass energy resources, potential, conversion and policy in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 530-539.
    3. Pandey, Vimal Chandra & Bajpai, Omesh & Singh, Nandita, 2016. "Energy crops in sustainable phytoremediation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 58-73.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashfaq, Asma & Khan, Zafar Iqbal & Ahmad, Kafeel & Ashraf, Muhammad Arslan & Hussain, Muhammad Iftikhar & Elghareeb, Eman M., 2022. "Hazard of selenium metal contamination in vegetables grown in municipal solid waste amended soil: Assessment of the potential sources and systemic health effects," Agricultural Water Management, Elsevier, vol. 271(C).
    2. Min Pan & Shing Him Lee & Liwen Luo & Xun Wen Chen & Yik Tung Sham, 2023. "Co-Application of Sewage Sludge, Chinese Medicinal Herbal Residue and Biochar Attenuated Accumulation and Translocation of Antibiotics in Soils and Crops," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    3. Monica Laura Zlati & Lucian Puiu Georgescu & Catalina Iticescu & Romeo Victor Ionescu & Valentin Marian Antohi, 2022. "New Approach to Modelling the Impact of Heavy Metals on the European Union’s Water Resources," IJERPH, MDPI, vol. 20(1), pages 1-24, December.
    4. Nidhal Marzougui & Nadia Ounalli & Sonia Sabbahi & Tarek Fezzani & Farah Abidi & Sihem Jebari & Sourour Melki & Ronny Berndtsson & Walid Oueslati, 2022. "How Can Sewage Sludge Use in Sustainable Tunisian Agriculture Be Increased?," Sustainability, MDPI, vol. 14(21), pages 1-22, October.
    5. Radheshyam Yadav & Wusirika Ramakrishna, 2023. "Biochar as an Environment-Friendly Alternative for Multiple Applications," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
    6. Lisa Maggioli & Sonia Chamizo & Raúl Román & Carlos Asensio-Grima & Yolanda Cantón, 2022. "Coupling Sewage Sludge Amendment with Cyanobacterial Inoculation to Enhance Stability and Carbon Gain in Dryland Degraded Soils," Agriculture, MDPI, vol. 12(12), pages 1-19, November.
    7. Oumaima Mabrouk & Helmi Hamdi & Sami Sayadi & Mohammad A. Al-Ghouti & Mohammed H. Abu-Dieyeh & Nabil Zouari, 2023. "Reuse of Sludge as Organic Soil Amendment: Insights into the Current Situation and Potential Challenges," Sustainability, MDPI, vol. 15(8), pages 1-25, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Makade, Rahul G. & Chakrabarti, Siddharth & Jamil, Basharat & Sakhale, C.N., 2020. "Estimation of global solar radiation for the tropical wet climatic region of India: A theory of experimentation approach," Renewable Energy, Elsevier, vol. 146(C), pages 2044-2059.
    2. Muhammad Shahbaz Akhtar & Sohaib Aslam & Allah Ditta & Bedur Faleh A. Albalawi & Yoko Oki & Yoshitaka Nakashima, 2022. "Interspecific Variability in Growth Characteristics and Phytoremediation of Cu by Free-Floating Azolla Macrophytes," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
    3. Sikarwar, Shailesh Singh & Surywanshi, Gajanan Dattarao & Patnaikuni, Venkata Suresh & Kakunuri, Manohar & Vooradi, Ramsagar, 2020. "Chemical looping combustion integrated Organic Rankine Cycled biomass-fired power plant – Energy and exergy analyses," Renewable Energy, Elsevier, vol. 155(C), pages 931-949.
    4. Sonthikun, Sonthawi & Chairat, Phaochinnawat & Fardsin, Kitti & Kirirat, Pairoj & Kumar, Anil & Tekasakul, Perapong, 2016. "Computational fluid dynamic analysis of innovative design of solar-biomass hybrid dryer: An experimental validation," Renewable Energy, Elsevier, vol. 92(C), pages 185-191.
    5. Sahoo, Abhisek & Kumar, Sachin & Mohanty, Kaustubha, 2021. "Kinetic and thermodynamic analysis of Putranjiva roxburghii (putranjiva) and Cassia fistula (amaltas) non-edible oilseeds using thermogravimetric analyzer," Renewable Energy, Elsevier, vol. 165(P1), pages 261-277.
    6. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    7. Fan Wei & Munazzam Jawad Shahid & Ghalia S. H. Alnusairi & Muhammad Afzal & Aziz Khan & Mohamed A. El-Esawi & Zohaib Abbas & Kunhua Wei & Ihsan Elahi Zaheer & Muhammad Rizwan & Shafaqat Ali, 2020. "Implementation of Floating Treatment Wetlands for Textile Wastewater Management: A Review," Sustainability, MDPI, vol. 12(14), pages 1-35, July.
    8. Moritz Wegener & Antonio Isalgué & Anders Malmquist & Andrew Martin, 2019. "3E-Analysis of a Bio-Solar CCHP System for the Andaman Islands, India—A Case Study," Energies, MDPI, vol. 12(6), pages 1-19, March.
    9. Tan, Ting & Yan, Zhimiao & Zou, Hongxiang & Ma, Kejing & Liu, Fengrui & Zhao, Linchuan & Peng, Zhike & Zhang, Wenming, 2019. "Renewable energy harvesting and absorbing via multi-scale metamaterial systems for Internet of things," Applied Energy, Elsevier, vol. 254(C).
    10. Monika Hejna & Elisabetta Onelli & Alessandra Moscatelli & Maurizio Bellotto & Cinzia Cristiani & Nadia Stroppa & Luciana Rossi, 2021. "Heavy-Metal Phytoremediation from Livestock Wastewater and Exploitation of Exhausted Biomass," IJERPH, MDPI, vol. 18(5), pages 1-16, February.
    11. Lari Shanlang Tiewsoh & Jakub Jirásek & Martin Sivek, 2019. "Electricity Generation in India: Present State, Future Outlook and Policy Implications," Energies, MDPI, vol. 12(7), pages 1-14, April.
    12. Jha, Gaurav & Soren, S., 2017. "Study on applicability of biomass in iron ore sintering process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 399-407.
    13. Natarajan, Karthikeyan & Latva-Käyrä, Petri & Zyadin, Anas & Pelkonen, Paavo, 2016. "New methodological approach for biomass resource assessment in India using GIS application and land use/land cover (LULC) maps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 256-268.
    14. Singh, Rhythm, 2018. "Energy sufficiency aspirations of India and the role of renewable resources: Scenarios for future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2783-2795.
    15. Nallapaneni Manoj Kumar & Shauhrat S. Chopra & Aneesh A. Chand & Rajvikram Madurai Elavarasan & G.M. Shafiullah, 2020. "Hybrid Renewable Energy Microgrid for a Residential Community: A Techno-Economic and Environmental Perspective in the Context of the SDG7," Sustainability, MDPI, vol. 12(10), pages 1-30, May.
    16. Mariusz Jerzy Stolarski & Paweł Dudziec & Michał Krzyżaniak & Ewelina Olba-Zięty, 2021. "Solid Biomass Energy Potential as a Development Opportunity for Rural Communities," Energies, MDPI, vol. 14(12), pages 1-21, June.
    17. Praveen Kumar, G. & Ayou, Dereje S. & Narendran, C. & Saravanan, R. & Maiya, M.P. & Coronas, Alberto, 2023. "Renewable heat powered polygeneration system based on an advanced absorption cycle for rural communities," Energy, Elsevier, vol. 262(PA).
    18. Karunakaran Gowri Ahila & Balasubramani Ravindran & Vasanthy Muthunarayanan & Dinh Duc Nguyen & Xuan Cuong Nguyen & Soon Woong Chang & Van Khanh Nguyen & Chandran Thamaraiselvi, 2020. "Phytoremediation Potential of Freshwater Macrophytes for Treating Dye-Containing Wastewater," Sustainability, MDPI, vol. 13(1), pages 1-13, December.
    19. Berhanu, Mesfin & Jabasingh, S. Anuradha & Kifile, Zebene, 2017. "Expanding sustenance in Ethiopia based on renewable energy resources – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1035-1045.
    20. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2016. "Biomass combustion systems: A review on the physical and chemical properties of the ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 235-242.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:2317-:d:502947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.