IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2020i1p329-d473359.html
   My bibliography  Save this article

Phytoremediation Potential of Freshwater Macrophytes for Treating Dye-Containing Wastewater

Author

Listed:
  • Karunakaran Gowri Ahila

    (Department of Biotechnology, Mother Teresa Women’s University, Kodaikanal, Tamil Nadu 624101, India)

  • Balasubramani Ravindran

    (Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon 16227, Korea)

  • Vasanthy Muthunarayanan

    (Water and Solid Waste Processing Lab, Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India)

  • Dinh Duc Nguyen

    (Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon 16227, Korea
    Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam)

  • Xuan Cuong Nguyen

    (Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
    Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam)

  • Soon Woong Chang

    (Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon 16227, Korea)

  • Van Khanh Nguyen

    (Department of Microbiology, Pusan National University, Busan 46241, Korea)

  • Chandran Thamaraiselvi

    (Department of Biotechnology, Mother Teresa Women’s University, Kodaikanal, Tamil Nadu 624101, India)

Abstract

Phytoremediation is a promising green technology for the remediation of various industrial effluents. Notably, aquatic plants are widely applied to remove dyes and toxic metals from polluted environments. In the present study, the phytoremediation potency of aquatic macrophytes such as Pistia stratiotes L, Salvinia adnata Desv, and Hydrilla verticillata (L.f) Royle were assessed based on the removal capability of pollutants from dyeing effluent. Physicochemical characterizations were carried out for industrial wastewater collected from a cotton material dyeing unit located in the Karur District of Tamilnadu, India. The physicochemical characteristics of the dyeing effluent, such as color, odor, pH, total dissolved solids (TDS), alkalinity, acidity, chloride, sulfate, phosphate, nitrate, chemical oxygen demand (COD), fluoride, and toxic metal levels were determined. The core parameters such as total dissolved solid (TDS), chemical oxygen demand (COD), and chloride level were determined and found to be 6500 mg/L, 2400 mg/L, and 2050 mg/L, respectively, which exceeded the regulatory limit prescribed by the Central Pollution Control Board of India. The levels of toxic metals such as Hg, Ni, and Zn were under the acceptable concentration but Cr and Pb levels in the dyeing effluent were a little bit higher. The effluent was subjected to treatment with Pistia stratiotes L, Salvinia adnata Desv and Hydrilla verticillata (L.f) Royle separately. After the treatment, the toxic metal results were recorded as below detectable levels and the same results were obtained for all three aquatic plants samples used for treatment. Among the three plants, P. stratiotes L efficiently removed 86% of color, 66% of TDS, 77% of COD, and 61.33% of chloride. The variation in phytochemicals of the macrophytes was studied before and after treatment using GC–MS which revealed the reduction of ascorbic acid in the plant samples. The toxic effect of treated effluent was investigated by irrigating an ornamental plant, Impatiens balsamina L. The plant biomass P. stratiotes L obtained after the treatment process was subjected to manure production and its nutrient quality was proved, which can be applied as a soil conditioner. Among the aquatic plants, the results of P. stratiotes L indicated a higher remediation potential, which can be used as an ecologically benign method for treatment of industrial effluents and water bodies contaminated with dyeing effluents.

Suggested Citation

  • Karunakaran Gowri Ahila & Balasubramani Ravindran & Vasanthy Muthunarayanan & Dinh Duc Nguyen & Xuan Cuong Nguyen & Soon Woong Chang & Van Khanh Nguyen & Chandran Thamaraiselvi, 2020. "Phytoremediation Potential of Freshwater Macrophytes for Treating Dye-Containing Wastewater," Sustainability, MDPI, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2020:i:1:p:329-:d:473359
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/1/329/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/1/329/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shafaqat Ali & Zohaib Abbas & Muhammad Rizwan & Ihsan Elahi Zaheer & İlkay Yavaş & Aydın Ünay & Mohamed M. Abdel-DAIM & May Bin-Jumah & Mirza Hasanuzzaman & Dimitris Kalderis, 2020. "Application of Floating Aquatic Plants in Phytoremediation of Heavy Metals Polluted Water: A Review," Sustainability, MDPI, vol. 12(5), pages 1-33, March.
    2. Lucy Ngatia & Johnny Grace III & Daniel Moriasi & Robert Taylor, 2019. "Nitrogen and Phosphorus Eutrophication in Marine Ecosystems," Chapters, in: Houma Bachari Fouzia (ed.), Monitoring of Marine Pollution, IntechOpen.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Shahbaz Akhtar & Sohaib Aslam & Allah Ditta & Bedur Faleh A. Albalawi & Yoko Oki & Yoshitaka Nakashima, 2022. "Interspecific Variability in Growth Characteristics and Phytoremediation of Cu by Free-Floating Azolla Macrophytes," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
    2. Fan Wei & Munazzam Jawad Shahid & Ghalia S. H. Alnusairi & Muhammad Afzal & Aziz Khan & Mohamed A. El-Esawi & Zohaib Abbas & Kunhua Wei & Ihsan Elahi Zaheer & Muhammad Rizwan & Shafaqat Ali, 2020. "Implementation of Floating Treatment Wetlands for Textile Wastewater Management: A Review," Sustainability, MDPI, vol. 12(14), pages 1-35, July.
    3. Monika Hejna & Elisabetta Onelli & Alessandra Moscatelli & Maurizio Bellotto & Cinzia Cristiani & Nadia Stroppa & Luciana Rossi, 2021. "Heavy-Metal Phytoremediation from Livestock Wastewater and Exploitation of Exhausted Biomass," IJERPH, MDPI, vol. 18(5), pages 1-16, February.
    4. Linhe Sun & Wei Wang & Fengjun Liu & Jixiang Liu & Fengfeng Du & Xiaojing Liu & Yajun Chang & Dongrui Yao, 2022. "Differences in Nitrogen and Phosphorus Removal under Different Temperatures in Oenanthe javanica Cultivars," Agriculture, MDPI, vol. 12(10), pages 1-15, October.
    5. Vasileios Ntouros & Ioannis Kousis & Dimitra Papadaki & Anna Laura Pisello & Margarita Niki Assimakopoulos, 2021. "Life Cycle Assessment on Different Synthetic Routes of ZIF-8 Nanomaterials," Energies, MDPI, vol. 14(16), pages 1-22, August.
    6. Sarah Dean & Muhammad Shahbaz Akhtar & Allah Ditta & Mohammad Valipour & Sohaib Aslam, 2022. "Microcosm Study on the Potential of Aquatic Macrophytes for Phytoremediation of Phosphorus-Induced Eutrophication," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    7. Jiashi Li & Xiaoqiang Dong & Xiaofeng Liu & Xin Xu & Wei Duan & Junboum Park & Lei Gao & Yisi Lu, 2022. "Comparative Study on the Adsorption Characteristics of Heavy Metal Ions by Activated Carbon and Selected Natural Adsorbents," Sustainability, MDPI, vol. 14(23), pages 1-17, November.
    8. Preeti Parihar & Naveen Chand & Surindra Suthar, 2022. "Treatment of High Nutrient-Loaded Wastewater in a Constructed Floating Wetland with Different Configurations: Role of Lantana Biochar Addition," Sustainability, MDPI, vol. 14(23), pages 1-12, December.
    9. Nuno Nunes & Carla Ragonezi & Carla S.S. Gouveia & Miguel Â.A. Pinheiro de Carvalho, 2021. "Review of Sewage Sludge as a Soil Amendment in Relation to Current International Guidelines: A Heavy Metal Perspective," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    10. Yean Ling Pang & Yen Ying Quek & Steven Lim & Siew Hoong Shuit, 2023. "Review on Phytoremediation Potential of Floating Aquatic Plants for Heavy Metals: A Promising Approach," Sustainability, MDPI, vol. 15(2), pages 1-23, January.
    11. Victor Lacerda Moura & Luiz Drude de Lacerda, 2022. "Mercury Sources, Emissions, Distribution and Bioavailability along an Estuarine Gradient under Semiarid Conditions in Northeast Brazil," IJERPH, MDPI, vol. 19(24), pages 1-16, December.
    12. Carolina Faccio Demarco & Maurízio Silveira Quadro & Filipe Selau Carlos & Simone Pieniz & Luiza Beatriz Gamboa Araújo Morselli & Robson Andreazza, 2023. "Bioremediation of Aquatic Environments Contaminated with Heavy Metals: A Review of Mechanisms, Solutions and Perspectives," Sustainability, MDPI, vol. 15(2), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2020:i:1:p:329-:d:473359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.