IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i3p1591-d492056.html
   My bibliography  Save this article

Cost–Benefit Analysis of HELE and Subcritical Coal-Fired Electricity Generation Technologies in Southeast Asia

Author

Listed:
  • Hassan Ali

    (School of Engineering Technology and Industrial Trades, College of the North Atlantic Qatar, Doha 24449, Qatar)

  • Han Phoumin

    (Economic Research Institute for ASEAN and East Asia (ERIA), Jakarta 10270, Indonesia)

  • Steven R. Weller

    (School of Electrical Engineering and Computing, The University of Newcastle, Callaghan, NSW 2308, Australia)

  • Beni Suryadi

    (ASEAN Centre for Energy (ACE), Jakarta 12950, Indonesia)

Abstract

A large potential exists in the Southeast Asia region for deployment of high-efficiency, low-emission (HELE) electricity generation technologies. A cost–benefit analysis of HELE technologies compared to the less efficient subcritical electricity generation plants is thus carried out to find a persuasive scenario supporting quicker transition from subcritical stations towards HELE technologies in the region. A levelized cost of electricity (LCOE) analysis is carried out for both technologies under four potential policy scenarios. Scenario 1 does not take into consideration any carbon pricing or costs associated with the desulphurization (deSOx) and denitrification (deNOx) facilities. Scenario 2 (Scenario 3) incorporates carbon pricing (costs associated with the deSOx and deNOx facilities), and Scenario 4 includes both carbon pricing and costs associated with the deSOx and deNOx facilities. Under each scenario, a sensitivity analysis is performed to evaluate the uncertainty affecting the future coal prices. This study demonstrates that HELE technologies are competitive against the subcritical plants under all four scenarios and both the technologies derive benefit from lifetime extensions and low coal prices. It is revealed that future deployments of HELE technologies can be best expedited by factoring in carbon pricing in LCOE costs of coal-fired power plants under Scenario 2.

Suggested Citation

  • Hassan Ali & Han Phoumin & Steven R. Weller & Beni Suryadi, 2021. "Cost–Benefit Analysis of HELE and Subcritical Coal-Fired Electricity Generation Technologies in Southeast Asia," Sustainability, MDPI, vol. 13(3), pages 1-16, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1591-:d:492056
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/3/1591/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/3/1591/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joseph E. Aldy & Robert Stavins, 2011. "The Promise and Problems of Pricing Carbon: Theory and Experience," NBER Working Papers 17569, National Bureau of Economic Research, Inc.
    2. Mitsuru Motokura & Jongkyun Lee & Ichiro Kutani & Han Phoumin, 2017. "Improving Emission Regulation for Coal-fired Power Plants in ASEAN," Books, Economic Research Institute for ASEAN and East Asia (ERIA), number 2016-rpr-02 edited by Mitsuru Motokura & Jongkyun Lee & Ichiro Kutani & Han Phoumin, July.
    3. Phuangpornpitak, N. & Kumar, S., 2007. "PV hybrid systems for rural electrification in Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1530-1543, September.
    4. Rhodes, Joshua D. & King, Carey & Gulen, Gürcan & Olmstead, Sheila M. & Dyer, James S. & Hebner, Robert E. & Beach, Fred C. & Edgar, Thomas F. & Webber, Michael E., 2017. "A geographically resolved method to estimate levelized power plant costs with environmental externalities," Energy Policy, Elsevier, vol. 102(C), pages 491-499.
    5. Huber, Matthias & Roger, Albert & Hamacher, Thomas, 2015. "Optimizing long-term investments for a sustainable development of the ASEAN power system," Energy, Elsevier, vol. 88(C), pages 180-193.
    6. Veldhuis, A.J. & Reinders, A.H.M.E., 2015. "Reviewing the potential and cost-effectiveness of off-grid PV systems in Indonesia on a provincial level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 757-769.
    7. Tran, Thomas T.D. & Smith, Amanda D., 2018. "Incorporating performance-based global sensitivity and uncertainty analysis into LCOE calculations for emerging renewable energy technologies," Applied Energy, Elsevier, vol. 216(C), pages 157-171.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han Phoumin & Fukunari Kimura & Jun Arima, 2021. "ASEAN’s Energy Transition towards Cleaner Energy System: Energy Modelling Scenarios and Policy Implications," Sustainability, MDPI, vol. 13(5), pages 1-29, March.
    2. Hassan Ali & Han Phoumin & Beni Suryadi & Aitazaz A. Farooque & Raziq Yaqub, 2022. "Assessing ASEAN’s Liberalized Electricity Markets: The Case of Singapore and the Philippines," Sustainability, MDPI, vol. 14(18), pages 1-24, September.
    3. Chien, FengSheng & Vu, Trong Lam & Hien Phan, Thi Thu & Van Nguyen, Sang & Viet Anh, Nguyen Ho & Ngo, Thanh Quang, 2023. "Zero-carbon energy transition in ASEAN countries: The role of carbon finance, carbon taxes, and sustainable energy technologies," Renewable Energy, Elsevier, vol. 212(C), pages 561-569.
    4. Amanda Qinisile Vilakazi & Sehliselo Ndlovu & Liberty Chipise & Alan Shemi, 2022. "The Recycling of Coal Fly Ash: A Review on Sustainable Developments and Economic Considerations," Sustainability, MDPI, vol. 14(4), pages 1-32, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Wei & Chen, Xi & Qiu, Jing & Hayward, Jennifier A & Sayeef, Saad & Osman, Peter & Meng, Ke & Dong, Zhao Yang, 2020. "A comprehensive review of variable renewable energy levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Xinkuo Xu & Liyan Han, 2017. "Diverse Effects of Consumer Credit on Household Carbon Emissions at Quantiles: Evidence from Urban China," Sustainability, MDPI, vol. 9(9), pages 1-25, September.
    3. Bhatt, Ankit & Sharma, M.P. & Saini, R.P., 2016. "Feasibility and sensitivity analysis of an off-grid micro hydro–photovoltaic–biomass and biogas–diesel–battery hybrid energy system for a remote area in Uttarakhand state, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 53-69.
    4. Díaz, P. & Peña, R. & Muñoz, J. & Arias, C.A. & Sandoval, D., 2011. "Field analysis of solar PV-based collective systems for rural electrification," Energy, Elsevier, vol. 36(5), pages 2509-2516.
    5. Stefan Niederhafner, 2014. "The Korean Energy and GHG Target Management System: An Alternative to Kyoto-Protocol Emissions Trading Systems?," TEMEP Discussion Papers 2014118, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Sep 2014.
    6. Lahimer, A.A. & Alghoul, M.A. & Yousif, Fadhil & Razykov, T.M. & Amin, N. & Sopian, K., 2013. "Research and development aspects on decentralized electrification options for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 314-324.
    7. Liu, Chunyu & Zheng, Xinrui & Yang, Haibin & Tang, Waiching & Sang, Guochen & Cui, Hongzhi, 2023. "Techno-economic evaluation of energy storage systems for concentrated solar power plants using the Monte Carlo method," Applied Energy, Elsevier, vol. 352(C).
    8. Mirhassani, SeyedMohsen & Ong, Hwai Chyuan & Chong, W.T. & Leong, K.Y., 2015. "Advances and challenges in grid tied photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 121-131.
    9. Zhang, Lijun & Li, Ye & Xu, Wenhao & Gao, Zhiteng & Fang, Long & Li, Rongfu & Ding, Boyin & Zhao, Bin & Leng, Jun & He, Fenglan, 2022. "Systematic analysis of performance and cost of two floating offshore wind turbines with significant interactions," Applied Energy, Elsevier, vol. 321(C).
    10. Alizadeh, Sadegh & Avami, Akram, 2021. "Development of a framework for the sustainability evaluation of renewable and fossil fuel power plants using integrated LCA-emergy analysis: A case study in Iran," Renewable Energy, Elsevier, vol. 179(C), pages 1548-1564.
    11. Ismail Kamdar & Shahid Ali & Juntakan Taweekun & Hafiz Muhammad Ali, 2021. "Wind Farm Site Selection Using WAsP Tool for Application in the Tropical Region," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
    12. Ioannis E. Kosmadakis & Costas Elmasides & Dimitrios Eleftheriou & Konstantinos P. Tsagarakis, 2019. "A Techno-Economic Analysis of a PV-Battery System in Greece," Energies, MDPI, vol. 12(7), pages 1-14, April.
    13. Zhang, Lige & Spatari, Sabrina & Sun, Ying, 2020. "Life cycle assessment of novel heat exchanger for dry cooling of power plants based on encapsulated phase change materials," Applied Energy, Elsevier, vol. 271(C).
    14. Jacqueline Adelowo & Mathias Mier & Christoph Weissbart, 2021. "Taxation of Carbon Emissions and Air Pollution in Intertemporal Optimization Frameworks with Social and Private Discount Rates," ifo Working Paper Series 360, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    15. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    16. Shi, Xunpeng & Yao, Lixia, 2020. "Economic Integration in Southeast Asia: The Case of the ASEAN Power Grid," Journal of Economic Integration, Center for Economic Integration, Sejong University, vol. 35(1), pages 152-171.
    17. Prakash, Vrishab & Ghosh, Sajal & Kanjilal, Kakali, 2020. "Costs of avoided carbon emission from thermal and renewable sources of power in India and policy implications," Energy, Elsevier, vol. 200(C).
    18. Liping Ding & Fan Zhang & Jing Shuai, 2018. "How Do Chinese Residents Expect of Government Subsidies on Solar Photovoltaic Power Generation?—A Case of Wuhan, China," Energies, MDPI, vol. 11(1), pages 1-11, January.
    19. Yasir Alsaedi & Gurudeo Anand Tularam & Victor Wong, 2021. "Impact of the Nature of Energy Management and Responses to Policies Regarding Solar and Wind Pricing: A Qualitative Study of the Australian Electricity Markets," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 191-205.
    20. Ahmed, Tofael & Mekhilef, S. & Shah, Rakibuzzaman & Mithulananthan, N., 2017. "Investigation into transmission options for cross-border power trading in ASEAN power grid," Energy Policy, Elsevier, vol. 108(C), pages 91-101.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1591-:d:492056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.