IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p12149-d671484.html
   My bibliography  Save this article

Deep Drilling for Groundwater in Bengaluru, India: A Case Study on the City’s Over-Exploited Hard-Rock Aquifer System

Author

Listed:
  • Tejas Kulkarni

    (Hydrology and Substance Balance, University of Kassel, 34125 Kassel, Germany
    Kiran Consultants, Bengaluru 560010, Karnataka, India)

  • Matthias Gassmann

    (Hydrology and Substance Balance, University of Kassel, 34125 Kassel, Germany)

  • C. M. Kulkarni

    (Kiran Consultants, Bengaluru 560010, Karnataka, India)

  • Vijayalaxmi Khed

    (Department of Agricultural Economics, University of Agricultural Sciences, Bengaluru—UASB, Bengaluru 560065, Karnataka, India)

  • Andreas Buerkert

    (Organic Plant Production and Agroecosystems Research in the Tropics and Subtropics—OPATS, University of Kassel, 37213 Witzenhausen, Germany)

Abstract

Over-exploitation of groundwater in India’s fastest-growing metropolis, Bengaluru, has resulted in wells being bored to unprecedented depths in a crystalline-rock aquifer. However, key questions about sustainability of this extraction process remain unaddressed due to the complexity of monitoring. Using primary surveys, this study looks at the spatio-temporal evolution of the wells on a city scale, finding that catchments with deficient water infrastructure have deeper wells. To maintain yields, well with depths >400 m are drilled, especially since 2000, leading to unsustainable groundwater extraction. Camera inspections in 54 wells at Electronic City in 2016 and 2017 revealed that water levels in the majority of the wells remained lower at depths <100 m, although some wells had deeper water levels at depths >250 m. Analysis of δ 18 O and δ 2 H signatures of groundwater samples at all depths followed the local meteoric water line indicating recent recharge, implying that drilling deeper only increases the borehole volume and does not tap into newer water sources. Water levels in deeper wells may stabilize at lower depths, are subject to high spatial variability, density of drilling, and high connectivity in upper zones. Given the interconnectedness between shallow and deeper aquifers, our research shows that increasing borewell depths could be a good indicator for falling aquifer water levels. This study fills an important gap in peri-urban, intermediate-scale aquifer conceptualizations across different land uses and provides further evidence for the difficulties of reliable groundwater monitoring in the over-exploited hard-rock aquifers of Bengaluru city.

Suggested Citation

  • Tejas Kulkarni & Matthias Gassmann & C. M. Kulkarni & Vijayalaxmi Khed & Andreas Buerkert, 2021. "Deep Drilling for Groundwater in Bengaluru, India: A Case Study on the City’s Over-Exploited Hard-Rock Aquifer System," Sustainability, MDPI, vol. 13(21), pages 1-20, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:12149-:d:671484
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/12149/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/12149/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nilanjan Ghosh & Pranab Mukhopadhyay & Amita Shah & Manoj Panda (ed.), 2016. "Nature, Economy and Society," Springer Books, Springer, number 978-81-322-2404-4, March.
    2. Amrtha Kasturi Rangan, 2016. "Participatory Groundwater Management: Lessons from Programmes Across India," IIM Kozhikode Society & Management Review, , vol. 5(1), pages 8-15, January.
    3. Vanesa Castán Broto & H.S. Sudhira & Hita Unnikrishnan, 2021. "WALK THE PIPELINE: Urban Infrastructure Landscapes in Bengaluru's Long Twentieth Century," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 45(4), pages 696-715, July.
    4. Martina Flörke & Christof Schneider & Robert I. McDonald, 2018. "Water competition between cities and agriculture driven by climate change and urban growth," Nature Sustainability, Nature, vol. 1(1), pages 51-58, January.
    5. Michael Goldman & Devika Narayan, 2019. "Water crisis through the analytic of urban transformation: an analysis of Bangalore’s hydrosocial regimes," Water International, Taylor & Francis Journals, vol. 44(2), pages 95-114, February.
    6. Thomas, B. & Patil, V. & Lele, S. & Srinivasan, V. & Eswar, M., 2018. "Adapting Or Chasing Water? Crop Choice And Farmers' Responses To Water Stress In Peri-Urban Bangalore, India," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277422, International Association of Agricultural Economists.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eva Schlecht & Matthias Gaßmann & Uwe Altrock & Andreas Thiel, 2023. "Special Issue “Rural–Urban Transformation of Asian Megacities from a Social-Ecological Systems Perspective”," Sustainability, MDPI, vol. 15(8), pages 1-5, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mosisa Teferi Timotewos & Matthias Barjenbruch, 2024. "Examining the Prospects of Residential Water Demand Management Policy Regulations in Ethiopia: Implications for Sustainable Water Resource Management," Sustainability, MDPI, vol. 16(13), pages 1-21, June.
    2. Entezari, A. & Wang, R.Z. & Zhao, S. & Mahdinia, E. & Wang, J.Y. & Tu, Y.D. & Huang, D.F., 2019. "Sustainable agriculture for water-stressed regions by air-water-energy management," Energy, Elsevier, vol. 181(C), pages 1121-1128.
    3. Dongying Sun & Jiarong Gu & Junyu Chen & Xilin Xia & Zhisong Chen, 2022. "Spatiotemporal differentiation and influencing factors of urban water supply system resilience in the Yangtze River Delta urban agglomeration," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 101-126, October.
    4. Mitter, Hermine & Schmid, Erwin, 2021. "Informing groundwater policies in semi-arid agricultural production regions under stochastic climate scenario impacts," Ecological Economics, Elsevier, vol. 180(C).
    5. Liu, Mengyu & Zhou, Xiong & Huang, Guohe & Li, Yongping, 2024. "The increasing water stress projected for China could shift the agriculture and manufacturing industry geographically," LSE Research Online Documents on Economics 124431, London School of Economics and Political Science, LSE Library.
    6. Emma Colven, 2023. "A political ecology of speculative urbanism: The role of financial and environmental speculation in Jakarta’s water crisis," Environment and Planning A, , vol. 55(2), pages 490-510, March.
    7. Beiying Li & Conghe Liu & Jingjing Bai & Yikun Huang & Run Su & Yan Wei & Bin Ma, 2024. "Strategy to mitigate substrate inhibition in wastewater treatment systems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Rosa, Lorenzo & Sanchez, Daniel L. & Realmonte, Giulia & Baldocchi, Dennis & D'Odorico, Paolo, 2021. "The water footprint of carbon capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    9. Li, Shengping & Tan, Deshui & Wu, Xueping & Degré, Aurore & Long, Huaiyu & Zhang, Shuxiang & Lu, Jinjing & Gao, Lili & Zheng, Fengjun & Liu, Xiaotong & Liang, Guopeng, 2021. "Negative pressure irrigation increases vegetable water productivity and nitrogen use efficiency by improving soil water and NO3–-N distributions," Agricultural Water Management, Elsevier, vol. 251(C).
    10. Zubair Ahmad Khan & Rohitashw Kumar & Afzal Husain Khan & Adil Majeed & Mohmmad Idrees Attar & P. Jagadesh, 2025. "Impact Assessment of Natural Springs for Irrigation Potential in the Hilly Areas of Kashmir," Sustainability, MDPI, vol. 17(12), pages 1-21, June.
    11. Vanesa Castán Broto & H.S. Sudhira & Hita Unnikrishnan, 2021. "WALK THE PIPELINE: Urban Infrastructure Landscapes in Bengaluru's Long Twentieth Century," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 45(4), pages 696-715, July.
    12. Esha Zaveri & Anders Jägerskog & Jason Russ & Amjad Khan & Richard Damania & Edoardo Borgomeo, 2021. "Ebb and Flow, Volume 1," World Bank Publications - Books, The World Bank Group, number 36089.
    13. Zuxuan Song & Fangmei Liu & Wenbo Lv & Jianwu Yan, 2023. "Classification of Urban Agricultural Functional Regions and Their Carbon Effects at the County Level in the Pearl River Delta, China," Agriculture, MDPI, vol. 13(9), pages 1-29, September.
    14. Aman Srivastava & Pennan Chinnasamy, 2024. "Watershed development interventions for rural water safety, security, and sustainability in semi-arid region of Western-India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 18231-18265, July.
    15. Amjad Khan & Yoonkyung Park & Jongpyo Park & Reeho Kim, 2022. "Assessment of Rainwater Harvesting Facilities Tank Size Based on a Daily Water Balance Model: The Case of Korea," Sustainability, MDPI, vol. 14(23), pages 1-15, November.
    16. Wenliang Li, 2020. "Quantifying the Building Energy Dynamics of Manhattan, New York City, Using an Urban Building Energy Model and Localized Weather Data," Energies, MDPI, vol. 13(12), pages 1-22, June.
    17. Muhammad Farhan & Muhammad Asim Yasin & Khuda Bakhsh & Rafaqet Ali & Sami Ullah & Saad Munir, 2022. "Determinants of risk attitude and risk perception under changing climate among farmers in Punjab, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 2163-2176, November.
    18. Mina Khodadad & Mohsen Sanei & Christian Narvaez-Montoya & Ismael Aguilar-Barajas, 2022. "Climatic Hazards and the Associated Impacts on Households’ Willingness to Adopt Water-Saving Measures: Evidence from Mexico," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    19. Zhiwei Wan & Xi Chen & Min Ju & Chaohao Ling & Guangxu Liu & Siping Lin & Huihua Liu & Yulian Jia & Meixin Jiang & Fuqiang Liao, 2020. "Streamflow Reconstruction and Variation Characteristic Analysis of the Ganjiang River in China for the Past 515 Years," Sustainability, MDPI, vol. 12(3), pages 1-20, February.
    20. Mark Ace Dela Cruz & Shinichiro Nakamura & Naota Hanasaki & Julien Boulange, 2021. "Integrated Evaluation of Changing Water Resources in an Active Ecotourism Area: The Case of Puerto Princesa City, Palawan, Philippines," Sustainability, MDPI, vol. 13(9), pages 1-15, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:12149-:d:671484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.