IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i20p11254-d654567.html
   My bibliography  Save this article

Traffic Signal Control via Reinforcement Learning for Reducing Global Vehicle Emission

Author

Listed:
  • Bálint Kővári

    (Department of Control for Transportation and Vehicle Systems, Budapest University of Technology and Economics, H-1111 Budapest, Hungary)

  • Lászlo Szőke

    (Robert Bosch Kft., H-1103 Budapest, Hungary)

  • Tamás Bécsi

    (Department of Control for Transportation and Vehicle Systems, Budapest University of Technology and Economics, H-1111 Budapest, Hungary)

  • Szilárd Aradi

    (Department of Control for Transportation and Vehicle Systems, Budapest University of Technology and Economics, H-1111 Budapest, Hungary)

  • Péter Gáspár

    (System and Control Lab, Institute for Computer Science and Control, H-1111 Budapest, Hungary)

Abstract

The traffic signal control problem is an extensively researched area providing different approaches, from classic methods to machine learning based ones. Different aspects can be considered to find an optima, from which this paper emphasises emission reduction. The core of our solution is a novel rewarding concept for deep reinforcement learning (DRL) which does not utilize any reward shaping, hence exposes new insights into the traffic signal control (TSC) problem. Despite the omission of the standard measures in the rewarding scheme, the proposed approach can outperform a modern actuated control method in classic performance measures such as waiting time and queue length. Moreover, the sustainability of the realized controls is also placed under investigation to evaluate their environmental impacts. Our results show that the proposed solution goes beyond the actuated control not just in the classic measures but in emission-related measures too.

Suggested Citation

  • Bálint Kővári & Lászlo Szőke & Tamás Bécsi & Szilárd Aradi & Péter Gáspár, 2021. "Traffic Signal Control via Reinforcement Learning for Reducing Global Vehicle Emission," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11254-:d:654567
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/20/11254/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/20/11254/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Julian Schrittwieser & Ioannis Antonoglou & Thomas Hubert & Karen Simonyan & Laurent Sifre & Simon Schmitt & Arthur Guez & Edward Lockhart & Demis Hassabis & Thore Graepel & Timothy Lillicrap & David , 2020. "Mastering Atari, Go, chess and shogi by planning with a learned model," Nature, Nature, vol. 588(7839), pages 604-609, December.
    2. David Silver & Julian Schrittwieser & Karen Simonyan & Ioannis Antonoglou & Aja Huang & Arthur Guez & Thomas Hubert & Lucas Baker & Matthew Lai & Adrian Bolton & Yutian Chen & Timothy Lillicrap & Fan , 2017. "Mastering the game of Go without human knowledge," Nature, Nature, vol. 550(7676), pages 354-359, October.
    3. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sorin Liviu Jurj & Tino Werner & Dominik Grundt & Willem Hagemann & Eike Möhlmann, 2022. "Towards Safe and Sustainable Autonomous Vehicles Using Environmentally-Friendly Criticality Metrics," Sustainability, MDPI, vol. 14(12), pages 1-52, June.
    2. Maksymilian Mądziel, 2023. "Vehicle Emission Models and Traffic Simulators: A Review," Energies, MDPI, vol. 16(9), pages 1-31, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boute, Robert N. & Gijsbrechts, Joren & van Jaarsveld, Willem & Vanvuchelen, Nathalie, 2022. "Deep reinforcement learning for inventory control: A roadmap," European Journal of Operational Research, Elsevier, vol. 298(2), pages 401-412.
    2. Li, Wenqing & Ni, Shaoquan, 2022. "Train timetabling with the general learning environment and multi-agent deep reinforcement learning," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 230-251.
    3. De Moor, Bram J. & Gijsbrechts, Joren & Boute, Robert N., 2022. "Reward shaping to improve the performance of deep reinforcement learning in perishable inventory management," European Journal of Operational Research, Elsevier, vol. 301(2), pages 535-545.
    4. Christopher R. Madan, 2020. "Considerations for Comparing Video Game AI Agents with Humans," Challenges, MDPI, vol. 11(2), pages 1-12, August.
    5. Huang, Ruchen & He, Hongwen & Gao, Miaojue, 2023. "Training-efficient and cost-optimal energy management for fuel cell hybrid electric bus based on a novel distributed deep reinforcement learning framework," Applied Energy, Elsevier, vol. 346(C).
    6. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    7. Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    8. Yang, Kaiyuan & Huang, Houjing & Vandans, Olafs & Murali, Adithya & Tian, Fujia & Yap, Roland H.C. & Dai, Liang, 2023. "Applying deep reinforcement learning to the HP model for protein structure prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    9. Weifan Long & Taixian Hou & Xiaoyi Wei & Shichao Yan & Peng Zhai & Lihua Zhang, 2023. "A Survey on Population-Based Deep Reinforcement Learning," Mathematics, MDPI, vol. 11(10), pages 1-17, May.
    10. Yifeng Guo & Xingyu Fu & Yuyan Shi & Mingwen Liu, 2018. "Robust Log-Optimal Strategy with Reinforcement Learning," Papers 1805.00205, arXiv.org.
    11. Touzani, Samir & Prakash, Anand Krishnan & Wang, Zhe & Agarwal, Shreya & Pritoni, Marco & Kiran, Mariam & Brown, Richard & Granderson, Jessica, 2021. "Controlling distributed energy resources via deep reinforcement learning for load flexibility and energy efficiency," Applied Energy, Elsevier, vol. 304(C).
    12. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    13. O’Malley, Cormac & de Mars, Patrick & Badesa, Luis & Strbac, Goran, 2023. "Reinforcement learning and mixed-integer programming for power plant scheduling in low carbon systems: Comparison and hybridisation," Applied Energy, Elsevier, vol. 349(C).
    14. Yuchao Dong, 2022. "Randomized Optimal Stopping Problem in Continuous time and Reinforcement Learning Algorithm," Papers 2208.02409, arXiv.org, revised Sep 2023.
    15. Shijun Wang & Baocheng Zhu & Chen Li & Mingzhe Wu & James Zhang & Wei Chu & Yuan Qi, 2020. "Riemannian Proximal Policy Optimization," Computer and Information Science, Canadian Center of Science and Education, vol. 13(3), pages 1-93, August.
    16. Xuan-Kun Li & Jian-Xu Ma & Xiang-Yu Li & Jun-Jie Hu & Chuan-Yang Ding & Feng-Kai Han & Xiao-Min Guo & Xi Tan & Xian-Min Jin, 2024. "High-efficiency reinforcement learning with hybrid architecture photonic integrated circuit," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Christoph Graf & Viktor Zobernig & Johannes Schmidt & Claude Klockl, 2021. "Computational Performance of Deep Reinforcement Learning to find Nash Equilibria," Papers 2104.12895, arXiv.org.
    18. Iwao Maeda & David deGraw & Michiharu Kitano & Hiroyasu Matsushima & Hiroki Sakaji & Kiyoshi Izumi & Atsuo Kato, 2020. "Deep Reinforcement Learning in Agent Based Financial Market Simulation," JRFM, MDPI, vol. 13(4), pages 1-17, April.
    19. Shohei Ohsawa, 2021. "Truthful Self-Play," Papers 2106.03007, arXiv.org, revised Feb 2023.
    20. Ayman Chaouki & Stephen Hardiman & Christian Schmidt & Emmanuel S'eri'e & Joachim de Lataillade, 2020. "Deep Deterministic Portfolio Optimization," Papers 2003.06497, arXiv.org, revised Apr 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11254-:d:654567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.