IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i13p7170-d582605.html
   My bibliography  Save this article

A Comprehensive Review on Residential Demand Side Management Strategies in Smart Grid Environment

Author

Listed:
  • Sana Iqbal

    (Department of Electrical Engineering, ZHCET, Aligarh Muslim University, Aligarh 202002, India)

  • Mohammad Sarfraz

    (Department of Electrical Engineering, ZHCET, Aligarh Muslim University, Aligarh 202002, India)

  • Mohammad Ayyub

    (Department of Electrical Engineering, ZHCET, Aligarh Muslim University, Aligarh 202002, India)

  • Mohd Tariq

    (Department of Electrical Engineering, ZHCET, Aligarh Muslim University, Aligarh 202002, India)

  • Ripon K. Chakrabortty

    (Capability Systems Centre, School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2612, Australia)

  • Michael J. Ryan

    (Capability Systems Centre, School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2612, Australia)

  • Basem Alamri

    (Department of Electrical Engineering, College of Engineering, Taif University, Taif 21944, Saudi Arabia)

Abstract

The ever increasing demand for electricity and the rapid increase in the number of automatic electrical appliances have posed a critical energy management challenge for both utilities and consumers. Substantial work has been reported on the Home Energy Management System (HEMS) but to the best of our knowledge, there is no single review highlighting all recent and past developments on Demand Side Management (DSM) and HEMS altogether. The purpose of each study is to raise user comfort, load scheduling, energy minimization, or economic dispatch problem. Researchers have proposed different soft computing and optimization techniques to address the challenge, but still it seems to be a pressing issue. This paper presents a comprehensive review of research on DSM strategies to identify the challenging perspectives for future study. We have described DSM strategies, their deployment and communication technologies. The application of soft computing techniques such as Fuzzy Logic (FL), Artificial Neural Network (ANN), and Evolutionary Computation (EC) is discussed to deal with energy consumption minimization and scheduling problems. Different optimization-based DSM approaches are also reviewed. We have also reviewed the practical aspects of DSM implementation for smart energy management.

Suggested Citation

  • Sana Iqbal & Mohammad Sarfraz & Mohammad Ayyub & Mohd Tariq & Ripon K. Chakrabortty & Michael J. Ryan & Basem Alamri, 2021. "A Comprehensive Review on Residential Demand Side Management Strategies in Smart Grid Environment," Sustainability, MDPI, vol. 13(13), pages 1, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7170-:d:582605
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/13/7170/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/13/7170/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Bin & Li, Wentao & Chan, Ka Wing & Cao, Yijia & Kuang, Yonghong & Liu, Xi & Wang, Xiong, 2016. "Smart home energy management systems: Concept, configurations, and scheduling strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 30-40.
    2. Muhammad Babar Rasheed & Nadeem Javaid & Ashfaq Ahmad & Mohsin Jamil & Zahoor Ali Khan & Umar Qasim & Nabil Alrajeh, 2016. "Energy Optimization in Smart Homes Using Customer Preference and Dynamic Pricing," Energies, MDPI, vol. 9(8), pages 1-25, July.
    3. Sheraz Aslam & Zafar Iqbal & Nadeem Javaid & Zahoor Ali Khan & Khursheed Aurangzeb & Syed Irtaza Haider, 2017. "Towards Efficient Energy Management of Smart Buildings Exploiting Heuristic Optimization with Real Time and Critical Peak Pricing Schemes," Energies, MDPI, vol. 10(12), pages 1-25, December.
    4. Maytham S. Ahmed & Azah Mohamed & Raad Z. Homod & Hussain Shareef, 2016. "Hybrid LSA-ANN Based Home Energy Management Scheduling Controller for Residential Demand Response Strategy," Energies, MDPI, vol. 9(9), pages 1-20, September.
    5. Mohammad Shakeri & Nowshad Amin & Jagadeesh Pasupuleti & Abolfazl Mehbodniya & Nilofar Asim & Sieh Kiong Tiong & Foo Wah Low & Chong Tak Yaw & Nurul Asma Samsudin & Md Rokonuzzaman & Chong Kok Hen & C, 2020. "An Autonomous Home Energy Management System Using Dynamic Priority Strategy in Conventional Homes," Energies, MDPI, vol. 13(13), pages 1-14, June.
    6. Muhammad Fayaz & DoHyeun Kim, 2018. "Energy Consumption Optimization and User Comfort Management in Residential Buildings Using a Bat Algorithm and Fuzzy Logic," Energies, MDPI, vol. 11(1), pages 1-22, January.
    7. Lu, Renzhi & Hong, Seung Ho, 2019. "Incentive-based demand response for smart grid with reinforcement learning and deep neural network," Applied Energy, Elsevier, vol. 236(C), pages 937-949.
    8. Keshtkar, Azim & Arzanpour, Siamak, 2017. "An adaptive fuzzy logic system for residential energy management in smart grid environments," Applied Energy, Elsevier, vol. 186(P1), pages 68-81.
    9. Venizelou, Venizelos & Makrides, George & Efthymiou, Venizelos & Georghiou, George E., 2020. "Methodology for deploying cost-optimum price-based demand side management for residential prosumers," Renewable Energy, Elsevier, vol. 153(C), pages 228-240.
    10. Faria, P. & Vale, Z., 2011. "Demand response in electrical energy supply: An optimal real time pricing approach," Energy, Elsevier, vol. 36(8), pages 5374-5384.
    11. Yinze Ren & Hongbin Wu & Hejun Yang & Shihai Yang & Zhixin Li, 2018. "A Method for Load Classification and Energy Scheduling Optimization to Improve Load Reliability," Energies, MDPI, vol. 11(6), pages 1-19, June.
    12. Lang, Corey & Okwelum, Edson, 2015. "The mitigating effect of strategic behavior on the net benefits of a direct load control program," Energy Economics, Elsevier, vol. 49(C), pages 141-148.
    13. Gabriele Lobaccaro & Salvatore Carlucci & Erica Löfström, 2016. "A Review of Systems and Technologies for Smart Homes and Smart Grids," Energies, MDPI, vol. 9(5), pages 1-33, May.
    14. Ghulam Hafeez & Nadeem Javaid & Sohail Iqbal & Farman Ali Khan, 2018. "Optimal Residential Load Scheduling Under Utility and Rooftop Photovoltaic Units," Energies, MDPI, vol. 11(3), pages 1-27, March.
    15. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "A review of residential demand response of smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 166-178.
    16. Chengdong Li & Zixiang Ding & Dongbin Zhao & Jianqiang Yi & Guiqing Zhang, 2017. "Building Energy Consumption Prediction: An Extreme Deep Learning Approach," Energies, MDPI, vol. 10(10), pages 1-20, October.
    17. Giovanni Pau & Mario Collotta & Antonio Ruano & Jiahu Qin, 2017. "Smart Home Energy Management," Energies, MDPI, vol. 10(3), pages 1-5, March.
    18. Delgarm, N. & Sajadi, B. & Kowsary, F. & Delgarm, S., 2016. "Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (PSO)," Applied Energy, Elsevier, vol. 170(C), pages 293-303.
    19. Omowunmi Mary Longe & Khmaies Ouahada & Suvendi Rimer & Ashot N. Harutyunyan & Hendrik C. Ferreira, 2017. "Distributed Demand Side Management with Battery Storage for Smart Home Energy Scheduling," Sustainability, MDPI, vol. 9(1), pages 1-13, January.
    20. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    21. Dileep, G., 2020. "A survey on smart grid technologies and applications," Renewable Energy, Elsevier, vol. 146(C), pages 2589-2625.
    22. Fthenakis, Vasilis & Kim, Hyung Chul, 2009. "Land use and electricity generation: A life-cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1465-1474, August.
    23. Laszlo T. Koczy & Jesus Medina & Marek Reformat & Kok Wai Wong & Jin Hee Yoon, 2019. "Computational Intelligence in Modeling Complex Systems and Solving Complex Problems," Complexity, Hindawi, vol. 2019, pages 1-6, January.
    24. Herter, Karen, 2007. "Residential implementation of critical-peak pricing of electricity," Energy Policy, Elsevier, vol. 35(4), pages 2121-2130, April.
    25. Israr Ullah & DoHyeun Kim, 2017. "An Improved Optimization Function for Maximizing User Comfort with Minimum Energy Consumption in Smart Homes," Energies, MDPI, vol. 10(11), pages 1-21, November.
    26. Fazli Wahid & Do Hyeun Kim, 2016. "An Efficient Approach for Energy Consumption Optimization and Management in Residential Building Using Artificial Bee Colony and Fuzzy Logic," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-13, June.
    27. Ahn, Jonghoon & Cho, Soolyeon & Chung, Dae Hun, 2017. "Analysis of energy and control efficiencies of fuzzy logic and artificial neural network technologies in the heating energy supply system responding to the changes of user demands," Applied Energy, Elsevier, vol. 190(C), pages 222-231.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baxter Williams & Daniel Bishop & Patricio Gallardo & J. Geoffrey Chase, 2023. "Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations," Energies, MDPI, vol. 16(13), pages 1-28, July.
    2. Kanakadhurga, Dharmaraj & Prabaharan, Natarajan, 2022. "Demand side management in microgrid: A critical review of key issues and recent trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Jahangir Hossain & Aida. F. A. Kadir & Ainain. N. Hanafi & Hussain Shareef & Tamer Khatib & Kyairul. A. Baharin & Mohamad. F. Sulaima, 2023. "A Review on Optimal Energy Management in Commercial Buildings," Energies, MDPI, vol. 16(4), pages 1-40, February.
    4. Abdulrashid Muhammad Kabir & Mohsin Kamal & Fiaz Ahmad & Zahid Ullah & Fahad R. Albogamy & Ghulam Hafeez & Faizan Mehmood, 2021. "Optimized Economic Load Dispatch with Multiple Fuels and Valve-Point Effects Using Hybrid Genetic–Artificial Fish Swarm Algorithm," Sustainability, MDPI, vol. 13(19), pages 1-27, September.
    5. Dániel István Németh & Kálmán Tornai, 2023. "Electrical Load Classification with Open-Set Recognition," Energies, MDPI, vol. 16(2), pages 1-14, January.
    6. Sriraj Gokarakonda & Christoph van Treeck & Rajan Rawal, 2022. "Investigating Optimum Cooling Set Point Temperature and Air Velocity for Thermal Comfort and Energy Conservation in Mixed-Mode Buildings in India," Energies, MDPI, vol. 15(6), pages 1-27, March.
    7. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    2. Tri-Hai Nguyen & Luong Vuong Nguyen & Jason J. Jung & Israel Edem Agbehadji & Samuel Ofori Frimpong & Richard C. Millham, 2020. "Bio-Inspired Approaches for Smart Energy Management: State of the Art and Challenges," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
    3. Carlos Cruz & Esther Palomar & Ignacio Bravo & Alfredo Gardel, 2020. "Cooperative Demand Response Framework for a Smart Community Targeting Renewables: Testbed Implementation and Performance Evaluation," Energies, MDPI, vol. 13(11), pages 1-20, June.
    4. Nizami, Sohrab & Tushar, Wayes & Hossain, M.J. & Yuen, Chau & Saha, Tapan & Poor, H. Vincent, 2022. "Transactive energy for low voltage residential networks: A review," Applied Energy, Elsevier, vol. 323(C).
    5. Bhagya Nathali Silva & Murad Khan & Kijun Han, 2020. "Futuristic Sustainable Energy Management in Smart Environments: A Review of Peak Load Shaving and Demand Response Strategies, Challenges, and Opportunities," Sustainability, MDPI, vol. 12(14), pages 1-23, July.
    6. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    7. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    8. Adnan Ahmad & Asif Khan & Nadeem Javaid & Hafiz Majid Hussain & Wadood Abdul & Ahmad Almogren & Atif Alamri & Iftikhar Azim Niaz, 2017. "An Optimized Home Energy Management System with Integrated Renewable Energy and Storage Resources," Energies, MDPI, vol. 10(4), pages 1-35, April.
    9. Abhinandana Boodi & Karim Beddiar & Malek Benamour & Yassine Amirat & Mohamed Benbouzid, 2018. "Intelligent Systems for Building Energy and Occupant Comfort Optimization: A State of the Art Review and Recommendations," Energies, MDPI, vol. 11(10), pages 1-26, September.
    10. Alvaro Llaria & Jessye Dos Santos & Guillaume Terrasson & Zina Boussaada & Christophe Merlo & Octavian Curea, 2021. "Intelligent Buildings in Smart Grids: A Survey on Security and Privacy Issues Related to Energy Management," Energies, MDPI, vol. 14(9), pages 1-37, May.
    11. da Fonseca, André L.A. & Chvatal, Karin M.S. & Fernandes, Ricardo A.S., 2021. "Thermal comfort maintenance in demand response programs: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    12. Mohammad Shakeri & Jagadeesh Pasupuleti & Nowshad Amin & Md. Rokonuzzaman & Foo Wah Low & Chong Tak Yaw & Nilofar Asim & Nurul Asma Samsudin & Sieh Kiong Tiong & Chong Kok Hen & Chin Wei Lai, 2020. "An Overview of the Building Energy Management System Considering the Demand Response Programs, Smart Strategies and Smart Grid," Energies, MDPI, vol. 13(13), pages 1-15, June.
    13. Makhadmeh, Sharif Naser & Khader, Ahamad Tajudin & Al-Betar, Mohammed Azmi & Naim, Syibrah & Abasi, Ammar Kamal & Alyasseri, Zaid Abdi Alkareem, 2019. "Optimization methods for power scheduling problems in smart home: Survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    14. Sébastien Bissey & Sébastien Jacques & Jean-Charles Le Bunetel, 2017. "The Fuzzy Logic Method to Efficiently Optimize Electricity Consumption in Individual Housing," Energies, MDPI, vol. 10(11), pages 1-24, October.
    15. Kim, Hakpyeong & Choi, Heeju & Kang, Hyuna & An, Jongbaek & Yeom, Seungkeun & Hong, Taehoon, 2021. "A systematic review of the smart energy conservation system: From smart homes to sustainable smart cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    16. He, Yongxiu & Wang, Bing & Wang, Jianhui & Xiong, Wei & Xia, Tian, 2012. "Residential demand response behavior analysis based on Monte Carlo simulation: The case of Yinchuan in China," Energy, Elsevier, vol. 47(1), pages 230-236.
    17. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    18. Hafize Nurgul Durmus Senyapar & Ramazan Bayindir, 2023. "The Research Agenda on Smart Grids: Foresights for Social Acceptance," Energies, MDPI, vol. 16(18), pages 1-31, September.
    19. Jia, Kunqi & Guo, Ge & Xiao, Jucheng & Zhou, Huan & Wang, Zhihua & He, Guangyu, 2019. "Data compression approach for the home energy management system," Applied Energy, Elsevier, vol. 247(C), pages 643-656.
    20. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7170-:d:582605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.